
Graph Rewrite Rules with Structural Recursion

Berthold Hoffmann1, Edgar Jakumeit2, and Rubino Geiß2 3

1 Universität Bremen and DFKI-Lab Bremen, Germany
2 Universität Karlsruhe (TH), Germany
3 LPA GmbH Frankfurt/Main, Germany

Abstract. Graph rewrite rules, programmed by sequencing and itera-
tion, suffice to define the computable functions on graphs—in theory. In
practice however, the control program may become hard to formulate,
hard to understand, and even harder to verify. Therefore, we have ex-
tended graph rewrite rules by variables that are instantiated by a kind
of hyperedge replacement, before the so instantiated rules are applied to
a graph. This way, rules can be defined recursively over the structure of
the graphs where they apply, in a fully declarative way. Generic rules
with variables and recursive rule instantiation have been implemented in
the graph rewrite tool GrGen.

1 Introduction

Graph rewriting is a basis for rule-based (“declarative”) programming with
graphs, in the same way as term rewriting is a basis of functional programming—
another rule-based paradigm. The following example from biology illustrates es-
sential concepts of functional programming. We take this as a starting point
for discussing concepts that would be useful for rule-based programming with
graphs, and shall come back to it later.

Example 1 (Transcribing DNA to RNA). The genetic information of DNA is
coded in four nucleic bases guanine (G), cytosine (C), adenine (A), and thymine
(T), where uracil (U) replaces thymine in RNA. These bases form pairs G–C and
A–T/U. A transcription of DNA to RNA starts after a sequence “TATAAA” on
the DNA strand, and builds an RNA strand with complementary bases, until
the termination sequence “CCCACT. . . AGTGGGAAAAAA” is found (where
“. . . ” stands for six arbitrary bases).

The following Haskell function defines transcription on strings representing
the base sequences.

transcription ds
| length ds < 30 = []
| isTATAAA ds = d2rna ((drop 6) ds)
| otherwise = transcription (tail ds) where

d2rna ds | length ds < 24 = error ”unterminated gene”
| isCCCACTuvwxyzAGTGGGAAAAAA ds = []
| otherwise = d2r (head ds) : d2rna (tail ds)

d2r ’A’ = ’U’; d2r ’C’ = ’G’; d2r ’T’ = ’A’; d2r ’G’ = ’C’;

2 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

(The omitted functions “isTATAAA” and “isCCC. . . AAA” test whether their ar-
guments begin with the corresponding bases, and (drop i) removes i leading
elements from a list.)

A rule-based functional language offers the following concepts:

1. A function may be defined with several rules that use pattern matching and
application conditions for case distinction.

2. Patterns may contain variables like ds, which are placeholders for values with
a specific, possibly recursive structure—character lists in this case.

3. Functions are defined by recursion over the structure of values. In our ex-
ample, d2rna calls d2r on the head, and itself recursively on the tail of its
argument.

Graph rewrite rules do certainly provide pattern matching, and may also support
application conditions. However, in contrast to term rewriting, graph rewrite
rules do not support variables that are placeholders for graphs of a specific struc-
ture. In most cases, structural recursion is not supported either. Instead, several
graph rewrite tools feature constructs for choosing a rule from a set, sequential
composition, and iteration. This suffices to define all computable functions on
graphs [12]. However, are these concepts adequate from a programmer’s point
of view? They do suggest a style of programming that is imperative rather than
declarative. More importantly, they certainly allow to control which rule shall
be applied next, but provide only little help to control the places where it shall
be applied.

Considering these deficiencies, we have extended the graph-rewrite tool Gr-
Gen [2] by generic rules with variables, where structure rules define the graphs
that may be substituted for variables. Several structure rules may define alter-
native substitutions of a variable, and the substitutions may contain variables
again, also recursively. So, a generic rule is instantiated recursively over a graph
structure before it is applied. Variables may be placeholders for sub-patterns of
a generic rule, like ds is a placeholder for string values. However, they may as
well denote a sub-rule, like d2rna and d2r denote auxiliary functions in the ex-
ample above. This concept shall improve the support for a declarative style of
programming with graphs.

The paper is structured as follows. In the next section, the concepts of single-
pushout (SPO) rewriting with negative application conditions are recalled. In
Section 3, controlled graph rewriting is discussed. The limitations of these control
programs have motivated our extension of rules by variables that are substituted
according to recursive structure rules, which is described in Section 4. Finally,
some related and future work is outlined in Section 5.

2 Graph Rewriting

In this section, we review the major notions of graphs and rules implemented in
the graph rewrite generator GrGen which is fully documented in [2] and [7].

Graph Rewrite Rules with Structural Recursion 3

Graphs. The graphs used in GrGen are directed and allow loops and multiple
edges from one node to another one. Their nodes and edges are labeled (typed).
Undirected edges are supported too, but for conciseness we want to view them as
a shorthand notation for pairs of undirected counter-parallel edges in this paper.
A fixed pair T = (Ṫ , T̄) of disjoint finite sets provides types for nodes and edges.
A (typed) graph G = (Ġ, Ḡ, srcG, tgtG, τ̇G, τ̄G) consists of disjoint finite sets Ġ of
nodes and Ḡ of edges, with mappings srcG, tgtG : Ḡ→ Ġ that associate a source
and a target node to its edges, and type mappings τ̇G : Ġ→ Ṫ and τ̄G : Ḡ→ T̄ .
We often write “x ∈ G” instead of “x ∈ Ġ or x ∈ Ḡ” and call x an item of G.

Let G and H be graphs. A pair m = (ṁ, m̄) of functions ṁ : Ġ → Ḣ and
m̄ : Ḡ → H̄ is a graph morphism (or just morphism, for short) if it preserves
sources, targets, and types, i.e., if srcH ◦ m̄ = ṁ ◦ srcG, tgtH ◦ m̄ = ṁ ◦ tgtG,
τ̇G = τ̇H ◦ ṁ, and τ̄G = τ̄H ◦ m̄. Then m is denoted as m : G → H, and called
injective (surjective resp.) if its component mappings have this property. If m is
injective and surjective, G and H are isomorphic, denoted as G ∼= H.

We say that a graph G is a subgraph of a graph H, and write G ⊆ H, if
the nodes and edges of G are subsets of those of H, and the mappings of G are
restrictions of the respective mappings of H to Ḡ and Ġ.

Let G be a graph with a subgraph D ⊆ G. A morphism m : D → H is called a
partial morphism from G to H, written m : G 99K H, and D is called the domain
of m, denoted by Dom(m). The partial morphism m is total if Dom(m) = G.

Example 2 (Graphs). In Figure 1, the molecular structure of the nucleic base
cytosine is specified in GrGen (on the right-hand side), and as a diagram (on
the left-hand side). The GrGen program model on top declares four node types
representing atoms, which are extensions of the predefined node type Node. Undi-
rected edges of the predefined type UEdge represent chemical bonds. In the graph

:N :O

:N

:N

:C

:C

:C

:C

:H:H

:H

:H

:H
n1

c1

c3

n2

1 node class C; // Program model

2 node class H;

3 node class N;

4 node class O;

1 test cytosine {

2 n1:N -- c1:C -- c2:C;

3 c2 -- c3:C -- n2:N -- c4:C -- n1;

4 c2 -- c1; n2 -- c3;

5 n1 -- :H; c1 -- :H; c2 -- :H;

6 c3 -- n3:N -- :H; n3 -- :H;

7 c4 -- o:O -- c4;

8 }

Fig. 1. The molecular structure of cytosine

4 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

specification4 below, items are introduced with x : t, where x is an optional item
identifier, and t its type; items may be reused with their name. An undirected
edge e with source x and target y is introduced by “x - e - y”, and “--”
introduces an anonymous edge of type UEdge.

In diagrams of graphs, nodes are depicted as circles, and edges are drawn as
arrows from their source to their target nodes, undirected edges without tips.
The type will be inscribed to the circle of a node, and ascribed to the arrow of
an edge. Sometimes, node identifiers are ascribed to their circles.

Rewriting. GrGen is based on rewrite rules according to the single-pushout
approach (SPO for short, see [15] for details) that may have negative application
conditions as defined in [10].

A graph rewrite rule (rule, for short) is an injective partial morphism r : P 99K
R. A conditional rule is a pair (C, r) with r as above, and a set C = {c1, . . . , ck}
of injective morphisms ci : P → P̃i (with 1 6 i 6 k). The graphs P̃i are negative
patterns, P is the pattern, and R is the replacement of (C, r).

An injective total morphism m : P → G is a match of a conditional rule
(C, r) as above if for all c : P → P̃ in C there is no total injective morphism
m̃ : P̃ → G so that m̃ ◦ c = m. A rewrite step of G using (C, r) via a match m
yields a graph G′ that is defined as a pushout, and can be constructed from the
disjoint union of G and R by (i) identifying, for all x ∈ Dom(r), the items r(x)
and m(x), and (ii) deleting, for every x ∈ P \Dom(r), the item m(x), including
all edges of G that are incident with m(x) if x is a node.

Such a step is denoted as G ⇒m,C,r G′. For a finite or infinite set R of
conditional rules, we write G ⇒R G′ if G ⇒m,C,r G

′ for some match m and
some (C, r) ∈ R. As usual, ⇒∗R shall denote the reflexive-transitive closure
of ⇒R.

The default way of rewriting in GrGen is via injective matches, but a spec-
ification hom(x,y) allows that the items x and y in P are identified by a match.
This can be modeled by extending the rule set R by a variant of the rule wherein
x and y are identical. However, a potential match m̃(P̃) of a negative pattern
may always overlap with the match m(P) of the pattern in an arbitrary way.

Rules as Graphs. Since rules shall be instantiated by applying other rules to
them (in the next section), it is important to note that a conditional rule can be
represented as a single graph. The rule graph 〈C, r〉 of a conditional rule (C, r) is
obtained from the disjoint union of its graph components P]R]

⊎
(c : P→P̃)∈C P̃

by identifying, for every x ∈ Dom(r), x with r(x), and for every c : P → P̃ ∈ C
and every y ∈ Dom(c), y with c(y).

Example 3 (A Rule Graph). The rule in Figure 2 extends a ribose chain in corre-
spondence to a deoxyribose chain. Here and in the following examples, DNA and
RNA are represented by chains, with nodes (of type D for deoxyribose and R for

4Actually, this is a test for the existence of a cytosine molecule in a graph.

Graph Rewrite Rules with Structural Recursion 5

:D

:R

:D

:R
<create>

prev

:PG

:PG

<in>
<out>

<create>

<out><in>

rprev

d

r

rule NextChainElement 1 rule NextChainElem(prev:D, rprev:R):(D,R)

2 {

3 prev -:PG-> d:D;

4

5 modify {

6 rprev -:PG-> r:R;

7 return(d,r);

8 }

9 }

Fig. 2. Rule NextChainElem extending a ribose chain

ribose) representing the sugars, and edges of type PG representing the phosphate
groups linking them. Nodes labeled A, C, G, T, and U that are connected to the
sugars represent the nucleic bases.

The textual notation of the rule in the specification language of GrGen is
shown on the right-hand side. The rule has a name (NextChainElement), two
node parameters (prev, rprev) and two result nodes (d, r). Parameters may be
used in the body, and results are indicated by return. The outer block defines
the pattern of the rule (in line 3); it contains a modify -block that specifies
how items shall be added to the pattern (in line 6). A delete -list could indicate
nodes and items to be removed from the pattern; this is not used in our example.
One or more negative -blocks could define negative application conditions (as
in rule DNAchain of Example 5).

The rule graph of NextChainElement is shown on the left-hand side of the
figure. The rule name appears at the top of the graph, its parameters are anno-
tated with 〈in〉, and its results with 〈out〉. Items in R that are not in r(P) are
annotated with 〈create〉, whereas items in P that are not in Dom(r) would be
annotated with 〈delete〉, and items of the negative application condition would
be crossed out.

3 Controlled Graph Rewriting

Controlled rewriting is typically expressed by operations that combine single
rule applications. As an example, we summarize the (graph) rewrite sequences
offered by GrGen.

– A rule application (y1, . . . yk) = r(x1, . . . , xm) attempts to extend the
matches of its parameters x1, . . . , xm to an arbitrary match of its pattern
so that the rule can be applied. If this is possible, the application succeeds,
and defines the variables y1, . . . yk; otherwise it fails. A test is handled the
same way, but does not modify the graph.

6 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

– For rewrite sequences S1, S2, the logical operations conjunction S1 &&S2

and disjunction S1 ||S2 are evaluated lazily from left to right: S2 is not
evaluated if the success or failure of S1 does already determine the result
of the operation. Their strict counterparts &, |, and the negation ! exist as
well.

– Iteration is supported by the constructs S∗ and S+ which evaluate a rewrite
sequence S until it fails. S∗ never fails, and S+ is equivalent to S&&S∗.

– Transactional brackets 〈S〉 undo all effects of intermediate evaluation steps
in a rewrite sequence S if the evaluation of S as a whole fails. Backtracking
however – in the sense of exploring all possible rewrite sequence applications
automatically – is not supported; this yields high efficiency in many cases,
but complicates handling of recursive structures, as it is not possible to
simply restart a stuck sequence at the last decision point.

A. Habel and D. Plump have shown in [12] that rewrite programs supporting
(i) choice of one rule from a set of (DPO) graph rewrite rules, (ii) sequential
composition, and (iii) exhaustive application suffice to define every computable
function on graphs. However, this does not mean that this kind of control sup-
ports practical programming in an optimal way.

Example 4 (A Graph Rewrite Sequence for DNA Transcription). The following
graph rewrite sequence performs DNA-to-RNA transcription like the Haskell
function in Example 1.

1 < (prev,rprev) = findTATAAA

2 && (!isCCCACTuvwxyzAGTGGGAAAAA(prev)

3 && (prev,rprev)=NextChainElement(prev,rprev)

4 && (A(prev,rprev) || C(prev,rprev) || G(prev,rprev) || T(prev,rprev))

5)*

6 && isCCCACTuvwxyzAGTGGGAAAAA(prev) >

The rule findTATAAA searches for the transcription starting sequence, the rule
NextChainElement known from Example 3 extends the ribose chain to the rear,
and the rules A, C, G, and T construct the nucleic base pair for the RNA chain
that is complementary to the nucleic base in the DNA chain. (Their rules are
similar to the alternatives of the pattern DNANucleotide shown in Example 5
further below.)

It is remarkable that the rewrite rules themselves perform rather trivial tasks
(finding a subsequence, duplicating a chain element, attaching a node), whereas
the controlling rewrite sequence that combines them is rather complex, even
for such a small example. For efficient rewriting it is important to pass nodes
matched in one rule to another one. Then we cannot only control which rule
is to be applied next, but may also indicate where it shall be applied. Rewrite
sequences can achieve this only for linear structures like lists, but for non-linear
recursive structures like trees, parameter passing cannot be handled without
general recursion in rewrite programs. The concepts devised for overcoming the
limitations of rewrite programs are described in the next section.

Graph Rewrite Rules with Structural Recursion 7

4 Generic Rules

In his master thesis [14], E. Jakumeit has designed and implemented rules with
structural recursion. Extending the rules strengthens the rule-based kernel of
GrGen, rather than the rewrite sequences defined on top of it. The basic idea
is that a generic rule contains variables, nonterminal nodes which are attached
to a fixed number of terminal nodes. A set of structure rules describes how
variables can be substituted. A variable may have several substitutions, which
can be used alternatively. These substitutions may again contain variables, even
in a recursive way. If the variable occurs in a pattern (positive or negative) of
the generic rule, its instantiation yields a sub-pattern. However, since generic
rules are represented as rule graphs, a variable may be attached to its (positive)
pattern and replacement at the same time. Then its instantiation yields a sub-
rule. Both sub-patterns and sub-rules are defined by structural recursion.

Formally, the semantics of generic rules is defined by a two-level graph rewrite
process. First, all variables in a generic rule are instantiated according to the
structure rules, by a context-free way of graph rewriting similar to hyperedge
replacement [9]. This process yields a language of simple rules that may be
infinite. Then, the host graph is rewritten with the resulting simple rules.

Assumption (Nonterminal Types). We assume that the type alphabets T =
(Ṫ , T̄) contain a subset N ⊆ Ṫ of nonterminals, which are equipped with an arity
function A : N → ℘(T̄ × (Ṫ \N)).

For all graphs G occurring in the following, we assume that nonterminals are
used according to their arity: Whenever G contains a node x with τ̇G(x) = n ∈
N , G shall contain, for every (t̄, ṫ) ∈ A(n), exactly one edge e and node y with
srcG(e) = x and tgtG(e) = y so that τ̄G(e) = t̄ and ṫ = τ̇G(y).

Nonterminals will occur only during instantiation, as types of variables in
generic rules or in structure rules, but neither in the host graphs, nor in the
simple rules applied to them. The remaining types, (Ṫ \ N) ∪ T̄ , are called
terminal, as well as rules and graphs over these types.

Variables. A node x with type n ∈ N is called a variable. A variable x is
called straight if it has as many incident edges as adjacent nodes. A subgraph
S induced by the incident edges of a variable is called a star, and its edges are
called rays, and drawn like that (see Figure 3).

Structure Rules. A rule s = S 99K 〈r〉 is a structure rule if its pattern S is a
straight star, 〈r〉 is the graph of an unconditional rule r : P 99K R, and Dom(s) is
the discrete subgraph that contains all terminal nodes of S. With Sp we denote
the maximal subgraph of Dom(s) so that its image s(Sp) is in the pattern P of
the rule graph 〈r〉. A structure rule s = S 99K 〈r〉 is a sub-pattern structure rule
if the morphism r : P 99K R is total and surjective, otherwise, it is a sub-rule
structure rule.

8 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

Instantiation of Generic Rules. A conditional rule (C, r) with r : P 99K R
is called generic if every variable y in R has a variable x in P with r(x) = y.

Let T = 〈C, r〉 be the graph of a generic rule and consider a structure rule
s = S 99K 〈r̂〉. A total morphism m : S → T is a rule match if m(Sp) is a
subgraph of the pattern of the rule graph 〈C, r〉, or, if s is actually a sub-pattern
structure rule (and Sp = S), if m(S) either lies completely in a negative pattern
P̃ (where c : P → P̃ ∈ C), or in the pattern of 〈C, r〉. Then T ⇒m,∅,s T

′ is an
instantiation step, where the transformed graph is a rule graph T ′ = 〈C ′, r′〉
again, whose negative patterns, pattern and replacement can be distinguished
by considering the pushouts for Sp and S \ Sp separately.

Let S be a finite set of structure rules, and define ⇒S to be its instantiation
relation. Then S derives, for some set R of generic conditional rules, the set of
simple conditional rules

S(R) = {〈C ′, r′〉 | 〈C, r〉 ∈ R, 〈C, r〉 ⇒∗S 〈C ′, r′〉, where 〈C ′, r′〉 is terminal}

The rewrite relation of generic rules R over structure rules S is given as ⇒S(R).

Example 5 (Transcription of DNA to RNA). Coming back to Examples 1 and 4,
we show a generic rule transcribing DNA to RNA in Figure 3. Now the tran-
scription can be specified by a single rule, with three nonterminals DNAChain,
DNANucleotide, and isCCCACTuvwxyzAGTGGGAAAAAA. We first discuss the tex-
tual notation of GrGen on the right-hand side of the figure. Six structure rules
define the sub-rules End, Chain and A, C, G, T for the first two nonterminals;
Chain uses DNAChain recursively. The rays and adjacent nodes of these nonter-
minals are given by the names and types of the formal parameters that follow
their name, plus those that follow the modify blocks in their rules. The structure
rule for the nonterminal isCCC. . .AAA defines a sub-pattern; note that it is used
for two (anonymous) variables: as a negative application pattern in the structure
rule End, and as a positive pattern in Chain. Using two (or more) variables of
the same structure within one rule is also important for expressing structural
recursion over non-linear structures like trees.

Note that the abstract DNA model employed here, where nodes and edges
represent sub-molecules, can easily be defined on the underlying chemical struc-
ture that is composed of atoms. To do that, every nucleic base node (of type A,
C, G, T, or U), every phosphate group edge (of type PG), and every sugar node
(of type D or R) has to be turned into a nonterminal, whose structure rules spec-
ify the corresponding sub-molecules, and have one, two, and three attachment
points respectively, which have to be joined according to the chemical bonds
between these sub-molecules. See [14] for details.

Rule Application. Instantiating generic rules first, and matching them after-
wards is only possible in theory —in practice, we have to interleave instantiation
with matching, as sketched in the following operational semantics of the recursive
rules, which has been implemented in the extension of GrGen [14]:

1. The terminal items in the generic rule’s pattern are matched.

Graph Rewrite Rules with Structural Recursion 9

:prev :rprev:DC

:R<create>

:D :D:T

:A

d1 rule transcription:D

:D

:D

:D

:D

:D

:D

:T

:A

:A

:A

:PG

:PG

:PG

:PG

:PG

:PG

d7

:prev :rprev
:DC

:R:TS
:nprev

:DN

:TS

:D

:D :R

:D :R

<create>

:R:D

:PG :PG

:nprev

:prev

:d

:rprev

:r

DNAChain

:DC

:d :r
:DN:D :R

:D :R

<create>

:U:A <create>

:D :R

<create>

:G:C <create>

:D :R

<create>

:C:G <create>

:D :R

<create>

:A:T <create>

DNANucleotide

1 rule transcription() {

2 d1:D -:PG-> d2:D -:PG-> d3:D -:PG-> d4;

3 d4:D -:PG-> d5:D -:PG-> d6:D -:PG-> d7;

4 d7:D; d1 --> :T; d2 --> :A; d3 --> :T;

5 d4 --> :A; d5 --> :A; d6 --> :A;

6 d2r:DNAChain(d7);

7 modify {

8 r:R; // new starting point for RNA

9 d2r(r);

10 }

11 }

12 pattern DNAChain(prev:D) {

13 alternative {

14 End {

15 :isCCCACTuvwxyzAGTGGGAAAAAA(prev);

16 modify(rprev:R) {

17 }

18 }

19 Chain {

20 negative {

21 :isCCCACTuvwxyzAGTGGGAAAAAA(prev);

22 }

23 prev -:PG-> next:D;

24 head:DNANucleotide(prev);

25 tail:DNAChain(next);

26 modify(rprev:R) {

27 rprev -:PG-> rnext:R;

28 head(rprev);

29 tail(rnext);

30 }

31 }

32 }

33 modify(rprev:R) { }

34 }

35 pattern DNANucleotide(d:D) {

36 alternative {

37 A { // analogously for C, G. T

38 d --> a:A;

39 modify(r:R) {

40 r --> u:U;

41 }

42 }

43 ...

44 }

45 pattern isCCCACTuvwxyzAGTGGGAAAAAA(d:D) {

46 ...

47 }

Fig. 3. DNA-to-RNA Transcription defined with a generic rule

10 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

2. It is checked whether the terminal items of a negative pattern may be
matched.

3. If this is the case, a variable attached to this negative pattern is substituted
according to a structure rule, and matching continues in step 2. If no variable
is left in the negative pattern, a match is found, and application of the rule
fails.

4. Otherwise, a variable attached to the pattern is substituted with one of its
structure rules, and matching continues with step 4. If there is no variable
anymore in the pattern, application of the rule succeeds.

5. The replacement of the generic rule—wherein variables are now instantiated—
replaces the match of the rule.

The structure rules S correspond to hyperedge replacement graph grammars.
Thus non-productive nonterminals, unused nonterminals, and chain rules can be
detected and removed [9]. When we assume S to be free of such nonterminals
and rules, the operational semantics is effective, since the substitution process
is bound to terminate. If the rules are defined with care, it can also be efficient.

5 Conclusions

In this paper we have described a concept by which graph rewrite rules can be
refined recursively so that advanced transformation tasks can be specified by
a single rule, without using imperative control structures. The declarative rule
gets applied in one single step to the host graph, in contrast to the sequence
of host graph states occuring during programmed rewriting. The concept has
been implemented in GrGen.NET 2.0, which is available at www.grgen.net.
Due to lack of space, we have simplified the full concepts of GrGen in several
respects: Nodes and edges of graphs may carry attribute values, their typing
may use inheritance, and the structure rules used for refining generic rules may
themselves be conditional.

The idea of using rules to refine rules has been first used in two-level (van-
Wijngaarden) grammars [3]. Early adaptations of this idea to graph gram-
mars [13, 8] were oriented towards defining graph languages, and not intended for
defining computations on graphs. The graph variables of shaped generic graph
rewrite rules [5] resemble the variables introduced here; they are refined by adap-
tive star replacement [4]. This is more general than the star replacement used
here, but more difficult (and less efficient) to implement. Graph variables as such
were first proposed in [16], but without the capability to constrain the shape of
the graph to be matched. The path expressions and multi-nodes of Progres [17]
and Fujaba [6] allow matching of a subset of the structures which can be han-
dled by recursive sub-patterns. (In contrast to the instantiations defined here,
the match of a path expression may overlap with the rest of a match.) Fu-
jaba [6] as well as earlier versions of GrGen furthermore support recursion on
the right hand side of a rule, i.e., it is possible to call a rule during a rewrite
step, after the match is done. This is purely imperative, because the calling rule
will make its changes to the graph anyway—regardless whether the called rule is

Graph Rewrite Rules with Structural Recursion 11

applicable or not. Viatra [1] was the first graph rewrite system to support re-
cursive sub-patterns, sub-rules however are not supported (they are only vaguely
sketched in the given reference). As of now it still is the only other system offer-
ing sub-patterns, but about two orders of magnitude slower than GrGen [14].
In any of the mentioned cases, variables are placeholders for sub-patterns only,
so that recursive patterns can get matched, but not rewritten (besides deleting
the entire sub-pattern).

An interesting question for the future is: Can rules and patterns be merged to
a single concept? Then, generic rules could refer to other rules like to variables,
and the application of a rule could “call” other rules, also recursively. With an
additional concept for the sequential composition of rules, this could set up a fully
declarative way of programming with graph rewrite rules that is computationally
complete in the sense of [12]. For such a declarative framework, it would also be
promising to analyze properties of generic rules, such as the existence of critical
pairs, or to try to transfer first results concerning overlapping rules with graph
variables [11] to it.

References

1. A. Balogh and D. Varró. Pattern composition in graph transformation rules. In
European Workshop on Composition of Model Transformations, Bilbao, Spain, July
2006. See also http://viatra.inf.mit.bme.hu/update/R2.

2. J. Blomer and R. Geiß. GrGen.net: A generative system for graph-rewriting,
user manual. www.grgen.net, 2007.

3. C. Cleaveland and R. Uzgalis. Grammars for Programming Languages. Elsevier,
New York, 1977.

4. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. Van Eetvelde. Adaptive
star grammars. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozen-
berg, editors, 3rd Int’l Conference on Graph Transformation (ICGT’06), number
4178 in Lecture Notes in Computer Science, pages 77–91. Springer, 2006.

5. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. Van Eetvelde. Shaped
generic graph transformation. In A. Schürr, M. Nagl, and A. Zündorf, editors,
Applications of Graph Transformation with Industrial Relevance (AGTIVE’07),
Lecture Notes in Computer Science. Springer, 2008. to appear.

6. T. Fischer, J. Niere, L. Turunski, and A. Zündorf. Story diagrams: A new graph
grammar language based on the Unified Modelling Language and Java. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Theory and Application of
Graph Transformation (TAGT’98), Selected Papers, number 1764 in Lecture Notes
in Computer Science, pages 296–309. Springer, 2000. http://www.fujaba.de/.

7. R. Geiß. Graphersetzung mit Anwendungen im Übersetzerbau (in German). Dis-
sertation, Universität Karlsruhe, 2007.

8. H. Göttler. Semantical descriptions by two-level gaph-grammars for quasi-
hierarchical graphs. In M. Nagl and H.-J. Schneider, editors, Graphs, Data Struc-
tures, Algorithms (WG’79), number 13 in Applied Computer Science, pages 207–
225, München-Wien, 1979. Carl-Hanser Verlag.

9. A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in
Lecture Notes in Computer Science. Springer, 1992.

12 Berthold Hoffmann, Edgar Jakumeit, Rubino Geiß

10. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26:287–313, 1996.

11. A. Habel and B. Hoffmann. Parallel independence in hierarchical graph transfor-
mation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, 2nd
Int’l Conference on Graph Transformation (ICGT’04), number 3256 in Lecture
Notes in Computer Science, pages 178–193. Springer, 2004.

12. A. Habel and D. Plump. Computational completeness of programming languages
based on graph transformation. In Proc. Foundations of Software Science and
Computation Structures (FOSSACS 2001), volume 2030 of Lecture Notes in Com-
puter Science, pages 230–245. Springer, 2001.

13. W. Hesse. Two-level graph grammars. In V. Claus, H. Ehrig, and G. Rozenberg,
editors, Graph Grammars and Their Application to Computer Science and Biology,
number 73 in Lecture Notes in Computer Science, pages 255–269. Springer, 1979.

14. E. Jakumeit. Mit GrGen.NET zu den Sternen. Diplomarbeit (in
German), Universität Karlsruhe (TH), 2008. http://www.info.uni-
karlsruhe.de/papers/dajakumeit.pdf .

15. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

16. D. Plump and A. Habel. Graph unification and matching. In J. E. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Proc. Graph Grammars and Their Appli-
cation to Computer Science, number 1073 in Lecture Notes in Computer Science,
pages 75–89. Springer, 1996.

17. A. Schürr, A. Winter, and A. Zündorf. The Progres approach: Language and
environment. In G. Engels, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation. Vol. II:
Applications, Languages, and Tools, chapter 13, pages 487–550. World Scientific,
Singapore, 1999.

