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Abstract. In this paper we present an extension of the Graph Rewrite
Generator GRGEN.NET by grammar rules which are similar to Extended
Backus Naur Form grammar rules with embedded actions known from
parser generators for string languages. The adaptation of this formalism
to graph languages and graph rewriting — yielding Structure Directed
Transformation — allows to process abstract syntax graphs concisely with
a few grammar rules and declaratively without external control.

1 DMotivation

The motivation for this paper and the graph rewriting language constructs in-
troduced herein stems from the domain of formal languages and parser genera-
tors. The following listing shows an example ANTLR [I3] grammar rule (from
the grammar of the GRGEN.NET rule language implementation, for matching
terms), with terminals in upper case and nonterminals in lower case, with a
Kleene star around a pattern to match it as long as possible and a bar separat-
ing several alternative cases; parameters are given in square brackets, semantic
actions are given within curly braces. A term is translated to a tree node of type
Expr, where a term consists of a factor, that may be followed by a sequence
consisting of a PLUS or MINUS operator and a factor.

term[boolean inInit] returns [Expr res]
: left=factor[inInit] { res = left; }
( ( PLUS right=factor[inInit]
{ res = new PlusExpr(res, right); }
| MINUS right=factor[inInit]
{ res = new MinusExpr(res, right); }
)
)*

In the aforementioned domains Backus Naur Form grammars built of rules like
the example rule above are used to describe context free (string) languages.
They consist of rules describing how nonterminals are to be replaced by one or
multiple alternative sequences of terminal characters and further nonterminals.
Backus Naur Form was extended with some form of regular expression notation
to improve the handling of regular grammar constructs (esp. iteration) leading
to Extended Backus Naur Form [2I]. EBNF is a highly convenient notation [22],
but notably it is brought to life by parser generators (as e.g. ANTLR [I3]).
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They read a declarative language specification in EBNF and generate a program
capable of matching a sentence of the specified language. It is not only the
language to match which is described and a parser generated for — additionally
a transformation is specified with embedded actions, from the implicit concrete
parse tree to an explicit abstract syntax tree. According to the mechanism of
syntaz directed translation [I] the entire input sentence is matched piece by
piece along the grammar constructs and an output sentence is built piece by
piece according to the embedded actions attached to the grammar constructs.

GRGEN.NET has been extended with an equivalent to syntax directed trans-
lation — structure directed transformation — which specifies the rewriting of a
graph language E| to a graph language, assembled along the structure of the
matching graph. The constructs known from Extended Backus Naur Form gram-
mars decorated with embedded actions were transferred from string languages
to graph languages; as string languages are different from graph languages the
formalisms are not identical, but the analogy works well. The structure of this pa-
per is as follows: after this motivation, an example domain is explained, followed
by an introduction into GRGEN.NET. Then the EBNF for graph rewriting con-
structs are introduced alongside an example, their semantics and implementation
is sketched, and related work is discussed; finally we conclude.

2 Program Graphs

The example we will use to bring the argument forward originates from the do-
main of program graphs and program graph transformation; we want to trans-
form an abstract syntax graph complying to a source model into a program
graph complying to a target model. We will use two simplified models which are
similar to the object oriented programming language graph models which can
be found in the Refactoring case [6] of GraBaTs 2008 and the Reengineering
[7] case of TTC 2011, just stripped down to the minimum needed for this pa-
per. The source model is given below; the target model is structurally identical,
notationally its elements have T- instead of S-suffixes.

node class Program$S; node class ClassS;

node class MethodS; node class AttributeS;

node class ConstantS { node class ExpressionS {
value:int; operator:string;

} }

node class AssignmentS; edge class containsS$S;

edge class leftS; edge class rightS;

edge class nextS; edge class usedefS;

The abstract syntax graph is built from nodes representing the language el-
ements; a program contains classes, a class contains attributes, constants or
methods. A method contains assignment statements, an assignment contains a
left and a right expression, and an expression is either a binary operator which

! derivable by star replacement (see section
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contains further left and right expressions, or a use-to-definition reference to a
variable or constant which is read (or written when it appears on the left hand
side). The assignment statements are linked with next edges into a list defining
the order of execution. So structurally we have an abstract syntax tree along
containment and left /right edges, which is extended to an abstract syntax graph
with next and use-to-definition edges.

3 GrGen.NET

In this section we will have a look at the rule specification language defining the
core of the general-purpose graph rewrite system GRGEN.NET available from
www.grgen.net} it builds the basis for the extensions of the following section.

Rules in GRGEN.NET consist of a header and a body, with the body split
into a pattern part specifying the graph pattern to match and a nested rewrite
part specifying the changes to be made. The header starts with the rule key-
word, followed by the rule name, an optional list of input parameters, and option-
ally a list of output parameters. The pattern part is given within curly braces,
as a list of graphlets, which are node and edge declarations or references, given
with an intuitive syntax: Nodes are declared by n:t, where n is an optional
node identifier, and t its type. An edge e with source x and target y is declared
by x -e:t-> y. Nodes and edges are referenced outside their declaration by n
and -e->, respectively. Attribute conditions can be given within if-clauses. The
rewrite part is specified by a rewrite block nested at the end of the pattern part
after the modify keyword. Graph elements declared in the rewrite-block are cre-
ated, all other graph elements are kept, unless they are specified to be deleted
within a delete()-statement. Attribute recalculations can be given within an
eval-statement. These and a lot more language elements are described in more
detail in the GRGEN.NET user manual [2].

The following example rule is used for optimizing a program graph by replac-
ing a*2 with a+a; displays a snapshot from debugging this rule with
the GRGEN.NET components GRSHELL and YCOMP on an example graph, with
the match highlighted.

rule optimize(e:ExpressionS) : (ConstantS)
{
e —:leftS-> el:ExpressionS -u:usedefS-> c:ConstantS;
e —:rightS-> :ExpressionS -:usedefS-> a:AttributeS;
if { e.operator=="*" && c.value==2; }
modify {
delete(u);
el -:usedefS—> a;
eval { e.operator = "+"; }
return(c) ;

}


www.grgen.net
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Fig. 1. Debugging the optimize rule

4 EBNF for Graph Rewriting

In the preceding section we had a look at the conventional rules with their fixed
left hand side (LHS) patterns and right hand side (RHS) rewrites. In the follow-
ing we will give an introduction to the structure directed transformation with
EBNF like constructs and embedded actions as implemented in GRGEN.NET,
by matching a spanning tree of a program graph along the containment edges
and creating a replicate of it complying to the destination model. This is only of
limited use as such, but it is the backbone operation of program graph transfor-
mations, to which the functionalities needed for the tasks at hand are attached.
While defining an exogenous transformation to showcase the ability to clone tree
structures, one could easily define an endogenous transformation only modifying
the found match instead.

The GRGEN.NET equivalent of the grammar rules offered by parser gener-
ators are the subpatterns, introduced by the keyword pattern. They resemble
the normal rules, with the key difference that they can not be called from the
rule application control language of GrGen or from API level, but are fragments
to be used from normal rules only. Subpatterns may declare parameters to define
locations where matching should start, and they may declare rewrite parameters
in the header to define locations where rewriting should continue. The graphlets
known from the rules are used in specifying the pattern and rewrite part, too. In
addition to the nodes and edges already known from the graphlets, subpattern
occurrences can be declared by giving an optional entity name, then a colon
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followed by the subpattern type name and a list of input (or output) parame-
ters. In the rewrite block the rewrite parts of the matched subpatterns can get
applied by using call syntax on the entity names of the matched subpatterns.

These constructs are employed in the listing given in which shows
five grammar rules for matching a containment tree in the syntax graph. The
first one, the subpattern Program matches the root node p of the abstract syntax
graph and i) one or more ii) classes. The “i) one or more” is realized by the EBNF
plus operator ()+. The “ii) classes” here means: a node c of type ClassS linked
to the program node, and a subpattern cls of type Class starting at the class
node. The pattern nested inside the iteration construct ()+ is not sequentially
following as in textual languages: it is matched anywhere in the graph — but
normally nodes declared outside the pattern are referenced inside, these border
nodes are then starting points of the search for pattern instances. A maximum
match is sought for them, i.e. they are matched eagerly until all available pattern
instances are covered. The modify parts of the Program subpattern create the
program node pt of the target model, the classes ct of the target model, and
request the execution of the rewrite part cls of the matched Class subpatterns,
starting at ct. The Class subpattern matches from the class node ¢ which is
passed as parameter onwards zero or more methods or attributes or constants;
the most interesting construct here is the alternative case distinction, with the
alternative cases separated by bars. The AssignmentList subpattern matches
recursively a list of assignments: each list element consists of an assignment with
a LHS and RHS Expression, matching the list terminates at the end of the list
when the optional (denoted by a question mark) following list element can not
be found. The subpattern Expression finally matches recursively a binary tree:
two nodes el and er of type ExpressionsS as left and right children of the parent
expression node e, including further Expression subpatterns starting at them,
or the empty pattern. Here we could match use-to-definition edges going from
the expression nodes to the attribute or constant nodes.

5 Semantics and Implementation

A formal semantics of the (E)BNF like language constructs of GRGEN.NET is
given in [9]. It is based on star grammars [3], cloning of nonterminals, and pair
graph grammars [I4]. The basic idea is to use a two-level graph rewrite process:
first, a language of graph rewrite rules is derived by pair star substitution, then
the host graph is rewritten with one of the resulting rules.

In this formalism rules contain stars, which are nonterminal nodes with their
incident edges (their rays), leading to terminal border nodes. The stars are deco-
rated by cardinalities, specifying lower and upper bounds on how often they may
be cloned. Star rules describe how a star can be substituted by a graph, maybe
containing further stars; this substituting graph is glued to the border nodes of
the star. A rule application consists of i) cloning the star and its incident rays,
producing cloned stars of a number in between the upper and lower bounds
specified, ii) then applying a matching star rule on each clone. For each star
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pattern Program {
p:ProgramS;
( p —:containsS-> c:ClassS; cls:Class(c);
modsfy { pt -:containsT-> ct:ClassT; cls(ct); }
)+
modify { pt:ProgramT; }

pattern Class(c:ClassS) modify(ct:ClassT) {
( ( ¢ -:containsS—> m:MethodS; meth:Method(m) ;
modify { ct -:containsT-> mt:MethodT; meth(mt); }
| ¢ —:containsS-> a:AttributeS;
modify { ct -:containsT-> at:AttributeT; }
| ¢ —:containsS-> cs:ConstantS;
modify { ct -:containsT-> cst:ConstantT; }
)
modify { }
)*
}

pattern Method(m:MethodS) modsfy(mt:MethodT) {
m -:containsS-> a:AssignmentS; al:AssignmentList(a);
modify { mt -:containsT-> at:AssignmentT; al(at); }
}

pattern AssignmentList(a:AssignmentS) modify(at:AssignmentT) {
a —:leftS-> el:ExpressionS; expl:Expression(el);
a -:rightS-> er:ExpressionS; expr:Expression(er);
( a -:nextS—> na:AssignmentS; al:AssignmentList(na);
modsfy { at -:nextT-> nat:AssignmentT; al(nat); }
)?
modify {
at -:leftT-> elt:ExpressionT; expl(elt);
at -:rightT-> ert:ExpressionT; expr(ert);
}
}

pattern Expression(e:ExpressionS) modsfy(et:ExpressionT) {
(
e —:leftS-> el:ExpressionS; expl:Expression(el);
e —:rightS-> er:ExpressionS; exp2:Expression(er);
mods fy {
et -:leftT-> elt:ExpressionT; expl(elt);
et —:rightT-> ert:ExpressionT; exp2(ert);
}

modify { }

Fig. 2. Subpatterns for replicating a program graph
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all alternatives and all admissible clones are enumerated. This way, we derive a
language of patterns that may be infinite (due to recursion or due to unlimited
upper bounds). Finally, the resulting language it matched in the graph.

A short hint on the mapping of the syntactical to the semantical constructs:
A subpattern maps to a star rule. An alternative with k cases maps to k star
rules with the same left star. An EBNF iteration construct maps to a star rule
with a non [1;1] bound. A subpattern usage, an alternative, and an iteration
are inserted as stars in their containing rule, with rays to the elements from the
containing pattern which are referenced.

This holds for singular stars, stars which occur only in the pattern part. But
as we are not only interested in matching a pattern but also in rewriting it, most
of the time we work with pairs: a star in the pattern part and a star in the
rewrite part linked together. They are substituted by pair star rules in lockstep,
the pattern star is replaced by the pattern graph, and the rewrite star is replaced
by the rewrite graph. This way we not only derive a language of pattern graphs,
but a language of pattern and rewrite graph pairs, i.e. rules (according to SPO
semantics, with common elements kept, LHS only elements deleted, and RHS
only elements created).

Instantiating graph rewrite rules first, and matching them afterwards is only
possible in theory — in practice, we have to interleave instantiation with match-
ing, as it is done by the triple pushdown machine generated by GRGEN.NET.
This machine built from a call stack containing already matched patterns, an
open tasks stack, and a result assembly stack is driven by recursive descent pars-
ing with backtracking. For every subpattern first the terminal parts are matched,
then the machine descends to the used subpatterns (stars). Alternatives cases
are tried out one after another, until one leads to a match. Iteration patterns are
matched until the upper bound is reached or matching fails. After a complete
match was found, a match tree is constructed. It is the base for the rewriting,
which is carried out during a depth first walk of the match tree. The implemen-
tation is explained in more detail in the user manual [2] and in [9].

6 Discussion

In section [4] a concise notation for specifying context free graph languages in-
spired by EBNF grammars for context free string languages was introduced
alongside an example. The following[Table 1] summarizes the correspondence be-
tween GRGEN.NET language constructs and language constructs known from
parser generators, like e.g. ANTLR.

Because there is no implicit first following character available as in string
languages with their strict linear ordering defined by concatenation, the subpat-
terns must be given parameters to specify where to match (this allows to match
into depth by handing in succeeding nodes); the iterated patterns are matched
into breadth, starting at the nodes of the outside pattern referenced from inside
the iterated pattern. In addition to these context free constructs known from
context free grammar specifications, GRGEN.NET supports context sensitive
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Table 1. Corresponding notational and conceptual elements

Graph EBNF

String EBNF

graphlets

subpattern entities
subpattern definitions
(.1.) (alternative cases)
(.)* (zero or more times)
(.)+ (one or more times)

terminal characters
nonterminals
grammar rules
.19

()=

)+

(.)? (zero or one time) |(.)7?
rewrite parts semantic actions

negative and positive patterns (application conditions [4]) with the syntax ~(.)
and &(.). The performance of the generated parser depends on the amount of
backtracking which is required. Matching and rewriting syntax graphs with ten
thousands of elements can be done with nearly no backtracking and is carried
out in a fraction of a second. But running times explode for other tasks which
require a lot of search and backtracking.

This is a follow up paper of [5] where the BNF like constructs were already
introduced. The additions are: i) an introduction of an analogy of syntax di-
rected translation to structure directed transformation, ii) the step from BNF
to EBNF with the pattern iteration constructs and their concrete GrGen nota-
tion, and iii) a first implementation of these constructs. Similar BNF like graph
pattern matching devices are available in the VIATRA2 [20] or TEFKAT [10]
tools, but constrained to matching and simple BNF only. More specialized lan-
guage constructs are multinodes and iterated paths. More general mechanisms
are triple graph grammars, bottom up graph parsers, and backtracking control
for inverted graph rewrite rules to build a parser.

Multinodes as available in e.g. PROGRES [17] are a limited version of pat-
tern iteration; they correspond to an iteration of a node with its incident pattern
edges. Several graph transformation tools have implemented a star operator over
edges to define iterated paths (e.g. PROGRES [1I7], GROOVE [16], GRETL
[8]); this can be seen as syntactic sugar for a recursive subpattern, matching
an edge from a start node to a successor node, and then calling itself from
the successor node on. An earlier, more general approach to structure directed
transformation are Triple Graph Grammars [I8], which allow to define the cor-
respondence between two different models in a declarative way with a corre-
spondence model in between. They can be made operational in either direction
giving a transformation from the source to the target model or vice versa. In
comparison, the EBNF with rewrite part constructs are limited to unidirectional
transformations, pair graph relations, and context free graph languages derivable
by star replacement; they are only used as fragments in defining more power-
ful rules. The backtracking recursive decent parsers generated from the EBNF
constructs in GRGEN.NET are similar to the graph parser combinators given
in [II] — in contrast to the bottom up (CYK like) parser presented in [12] for a
more general class of graph languages defined by adaptive star grammars, and
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to the parsing algorithm introduced in [I5] for context-sensitive layered graph
grammars. A further more general approach to parsing is implemented in AGG
[19], which offers backtracking control on a set of general graph rewrite rules.
In a preliminary step the language generating grammar is transformed into a
parsing grammar by exchanging the left hand sides and right hand sides of the
rules. The parsing grammar is then executed under backtracking control until
the given graph was reduced to the start graph or all reduction paths got stuck.

The EBNF and SDT constructs are more general and powerful than the
language constructs cited at the beginning of the previous paragraph but much
less powerful than the lastly cited general graph parsing or structure directed
rewrite mechanisms. A simple means which allows an efficient handling of a
limited, but highly useful class of context free graph languages; a declarative
sublanguage employed to increase the expressiveness of the conventional graph
rewrite rules, still used operationally.

7 Conclusions

The rule specification language of GRGEN.NET was extended by constructs
similar to the ones which can be found in EBNF grammars, giving a concise and
convenient notation for expressing star-derivable context free graph languages,
and for declaratively specifying transformations of such languages in a structure
directed way with embedded rewrite parts. They are brought to life by back-
tracking recursive descent parsers which are generated out of the specifications
by the graph rewrite generator. They allow to cut down on the number of rules
and the size of the orchestrating control needed for complex graph transforma-
tion tasks, by shifting the rewriting of tree like sublanguages below graph rewrite
rule level.

We want to thank the anonymous reviewers and Berthold Hoffmann for their
valuable comments.
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