
Universität Karlsruhe (TH)
Forschungsuniversität • gegründet 1825

Fakultät für Informatik

Institut für Programmstrukturen
und Datenorganisation

Lehrstuhl Prof. Goos

Embedding the graph rewrite system
GrGen.NET into C#

Diploma thesis by Moritz A. Kroll

August 2008

Supervisor:
Dipl.-Inform. Dr. Rubino Geiß

Responsible supervisor:
Prof. em. Dr. Dr. h.c. Gerhard Goos

ii

Hiermit erkläre ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Hilfsmittel benutzt zu haben.

Ort, Datum Unterschrift

iii

Kurzfassung

Für die Entwicklung komplexer graphersetzungsgestützter Anwendungen benötigt man
eine Programmierplattform, mit der man komfortabel und typsicher arbeiten kann. Neben
einer geeigneten Darstellung der Graphersetzungsregeln ist dazu aber vor allem auch die
Programmierschnittstelle zwischen der verwendeten Hochsprache und dem Grapherset-
zungssystem von entscheidender Bedeutung.

Anhand von typischen Anwendungsfällen wird GrGen.NET bezüglich Komfort und
Typsicherheit mit der bereits existierenden eingebetteten Graphersetzungssprache XL
verglichen, die bereits über eine sehr gute Programmierschnittstelle verfügt. Da XL
jedoch für die Modellierung von Pflanzen entwickelt wurde und die Graphelemente immer
eine Verbindung zu einer “Wurzel” benötigen, ist XLs Graphmodell nicht für allgemeine
Anwendungen geeignet.

Die durch den Vergleich mit XL gewonnenen Erkenntnisse werden dann zuerst dazu
verwendet, die Programmierschnittstelle von GrGen.NET in Angriff zu nehmen und
bezüglich Komfort sowie Typsicherheit deutlich zu verbessern. Mit der darauf aufbauen-
den Einbettung (Embedding) von domänen-spezifischen Konstrukten von GrGen.NET
(⇒ Domain-Specific Language (DSL)) in die Programmiersprache C# erhält man eine
universelle Programmiersprache mit einem übersichtlichen Zusammenspiel zwischen Graph-
datenhaltung, -ersetzung und -manipulation. Insbesondere können damit Variablen aus dem
C#-Kontext in Graphersetzungsregeln verwendet werden; auch die umgekehrte Richtung ist
möglich. Der Nutzen dieser Einbettung wird anhand von Beispielen aus dem Übersetzerbau
gezeigt.

iv

Contents

1 Introduction 1
1.1 GrGen.NET . 1
1.2 Motivation . 3
1.3 What can be done? . 5

2 Related Work 7
2.1 Simple Approaches . 7

2.1.1 LINQ . 7
2.1.2 C Preprocessor . 8

2.2 Embedded Domain-Specific Languages . 8
2.2.1 Embedded SQL . 9
2.2.2 XL . 10

2.3 Ways to Implement an EDSL . 12
2.3.1 MetaBorg . 13
2.3.2 C# Parser . 13
2.3.3 The Mono C# Compiler . 13

3 Scenario and Problem Analysis 15
3.1 Model Specification . 15
3.2 Rule Specification . 19
3.3 Simple Rule Execution . 21
3.4 Executing Many Rules . 25
3.5 Graph Modification . 27

3.5.1 Creation and Initialization of Single Elements 28
3.5.2 Deletion of Single Elements . 28
3.5.3 More Complex Graph Modifications (irregular) 29
3.5.4 More Complex Graph Modifications (regular) 30
3.5.5 Conclusion . 32

3.6 Working with Matches . 32
3.7 Graph Traversal . 34
3.8 Conclusion . 39

3.8.1 Model . 39
3.8.2 Rules . 42

v

vi CONTENTS

3.8.3 Rule Execution . 44

3.8.4 Graph Traversal . 45

4 Proposed Solutions 47

4.1 GrGen.NET API Changes . 47

4.1.1 Assimilating Attributes into Graph Elements 47

4.1.2 Refactoring the Graph Model API Architecture 50

4.1.3 Type-safe Handling of Graphs . 51

4.2 New GrGen.NET Features . 51

4.2.1 Element Constructors . 51

4.2.2 Non-Graph-Element Parameters and Return Values 52

4.2.3 Visited Flags . 53

4.3 Embedded GrGen.NET: G# . 55

4.3.1 Model Specification . 56

4.3.2 Rule Specification . 57

4.3.3 Domain-Specific Syntax in Methods 57

4.3.4 Treating Rule Applications like Methods 59

4.3.5 Supporting XGRSs . 60

4.3.6 Special Syntax for Depth-First Search 61

4.4 Conclusion . 63

4.4.1 Model . 64

4.4.2 Rules . 66

4.4.3 Rule Execution . 67

4.4.4 Graph Traversal . 68

5 Implementation 69

5.1 The Mono C# Compiler . 69

5.2 Extending the Mono C# Compiler . 70

5.2.1 Lexer . 71

5.2.2 Parser . 72

6 Results and Evaluation 75

6.1 Benefit of Using G# . 75

6.1.1 Short Introduction to libFirm . 75

6.1.2 Example: The Weight of a Method Parameter 76

6.1.3 Example: Finding a Rotl Pattern 78

6.1.4 Evaluation . 81

6.2 Usability Improvements . 82

6.3 Performance of GrGen.NET . 84

6.3.1 Memory Usage . 84

6.3.2 Running Time . 84

CONTENTS vii

7 Conclusion and Prospects 87
7.1 Conclusion . 87
7.2 Prospects . 87

A Language Definition 91
A.1 C# Grammar Extensions . 91

A.1.1 Definitions . 92
A.1.2 Model Declarations . 93
A.1.3 Rule Declarations . 93
A.1.4 Test Declarations . 94
A.1.5 Pattern Declarations . 94
A.1.6 The Match Statement . 94
A.1.7 The Match-At-Once Statement . 95
A.1.8 The Match-Action Statement . 95
A.1.9 The Match-Action-At-Once Statement 96
A.1.10 The Matched Statement . 96
A.1.11 The Modify Statement . 97
A.1.12 The ForDepth Statement . 97
A.1.13 The Tuple Call Expression . 98
A.1.14 The Exec Expression . 98

A.2 C# Semantic Extensions . 99
A.2.1 Foreach on Graphs . 99

B Examples 101

viii CONTENTS

Chapter 1

Introduction

The basic task of a graph rewrite system1 is to apply graph rewrite rules, which search for
a pattern (left-hand-side of the rule, LHS) in a graph (called host graph) and replace it
by another pattern (right-hand-side of the rule, RHS). The patterns are described using
nodes, edges and possibly other properties like type and attribute conditions or negative
application conditions. A graph model2 specifies the type hierarchy of the node and edge
types including their attributes and may also describe some parts of the structure of the
graph.

Complex applications whose core data is naturally represented as graphs are good
candidates for benefiting from the concise and declarative specifications of graph rewrite
rules. However, other parts of the program like database communication or a GUI may be
more suitably formulated in an imperative general purpose language. But as most general
purpose languages like Java and C# are very limited in their syntax, it is not possible to
use the domain-specific notations of the graph rewrite system to describe graph models
and patterns without the use of external files. This does not only lead to very scattered
code which is difficult to understand, but may also make the code less type-safe if the API
of the graph rewrite system is inappropriate, as is the case with GrGen.NET 1.3.1.

In this work I develop a convenient programming interface between the graph rewrite
system GrGen.NET and the object-oriented general purpose language C#. As a part of
this, the API of GrGen.NET 1.3.1 has been progressively improved and implemented in
the versions 1.4 and 2.0. To gain first insight into the problems, two motivating examples
are presented after a short introduction to GrGen.NET.

1.1 GrGen.NET

GrGen.NET is an application domain neutral graph rewrite system based on the SPO
approach [GBG+06, Kro07, Gei08]. It uses attributed and typed multigraphs with mul-
tiple inheritance on node and edge types and offers an expressive and easy to learn rule

1Also called graph transformation system.
2Also called meta-model.

1

2 CHAPTER 1. INTRODUCTION

specification language. In spite of its expressiveness it is one of the fastest automatic
graph rewrite systems [SNZ08] with the help of search plan driven graph pattern match-
ing [Bat06, BKG08], which can also be used to adapt the pattern matching to changing
structures of the graph. To quickly develop simple graph rewrite applications, GrGen.NET
offers a high-level interface to programmed rule application called eXtended Graph Rewrite
Sequences (XGRS) supporting logical and iterative sequence control and nested transactions.
Although the rule applications together with the XGRSs are Turing-complete and even have
been used to develop a simple compiler [Den07], they have not been designed for complex
applications forcing the developer back to the API of GrGen.NET.

Rewrite
Rules (*.grg)

Graph Model
(*.gm)

GrGen.NET
Generator
(Java, C#)

Rewrite Rules
(C#)

Graph Model
(C#)

Graph Man-
agement (C#)

libGr (C#)

ApplicationsGrShell (C#)
Graph Rewrite
Script (*.grs)

Backend (Run Time)Frontend (Compile Time)

call

read / generate

Figure 1.1: GrGen.NET system components

Figure 1.1 shows the basic architecture of GrGen.NET. The graph models are specified
in .gm files, while the graph rewrite rules reside in .grg files referring to the graph models.
The GrGen.NET Generator, written in Java and C#, compiles them to .NET assemblies
which form a graph backend when combined with a graph management library. Working
on the backend, libGr is a generic graph API which offers some important C# interfaces:

• IGraphModel: A graph model.

• ITypeModel: A set of node or edge types.

• IType: A node or edge type.

• IGraph: A graph consisting of nodes and edges of a graph model.

• IGraphElement: A node or an edge.

• INode: A node.

• IEdge: An edge.

• IAction: A graph rewrite rule.

• IActions: A set of graph rewrite rules.

• IMatch: A match of a pattern consisting of nodes and/or edges.

• IMatches: A set of matches.

1.2. MOTIVATION 3

The backend provides implementations for these interfaces, the most important ones being
LGSPGraph for IGraph, LGSPNode for INode, and LGSPEdge for IEdge. While the
GrShell, GrGen.NET’s command line shell, only uses the generic libGr API, user
applications may also access the generated assemblies and their types directly to avoid
querying for the objects by their names. So the generated assemblies are also part of the
API.

1.2 Motivation

Developing graph transformation based applications with the API of GrGen.NET 1.3.1
is tedious at times, as the following two basic examples show.

Example: Creating and Initializing a Node

If you want to create a node of some type WriteV alue and initialize its attribute value
with 7, you have to write the following code (given you already have a graph graph of the
according model):

LGSPNode node = graph.AddNode(NodeType_WriteValue.typeVar);
((INode_WriteValue) node.attributes).value = 7;

This small code fragment already reveals several problems:

• Class names generated from the model specification are always prefixed to avoid name
clashes. This leads to unnecessarily long type names, even if the user does not need
them as e.g. the model type names are already self-explaining.

• To access an attribute you first have to read the attributes field of the graph element
(member of LGSPNode and LGSPEdge) and then cast it to the appropriate element
type. This is not only unacceptable for users of the API but also requires many casts
leading to slow attribute access. It reveals implementation details of the library which
are of no interest to most users.

• Type safe handling of graph elements is not possible as only the attributes fields has
a special type. When whole graph elements (element + attributes) are needed, only
the general interfaces IGraphElement, INode and IEdge or the general backend
implementation classes LGSPNode and LGSPEdge can be used.

Example: Simple Pattern Matching

Consider another very basic example where you have a node n of type Process and want
to find an outgoing edge e of type Request to a node of type Resource whose amount
attribute is greater than some not statically known value i. If there is no such edge, e
should be null at the end. With GrGen.NET 1.3.1 you have two reasonable choices:

4 CHAPTER 1. INTRODUCTION

Using a graph rewrite rule and the API: Before GrGen.NET 2.0 rules are not able
to take non-graph-element parameters, so you have to use a dummy graph element
with an accordingly typed attribute to pass values to rules. As no modification of the
graph is needed here, a test can be used instead of a rule, which is just a graph rewrite
rule with the RHS implicitly declared as the LHS without application conditions:

test GetResource(n:Process, dummy:Dummy) : (Resource)
{

n -:Request-> res:Resource;
i f { res.amount > dummy.value; }
return (res);

}

A test has no modification part, but internally the return statement belongs to one.
In order to get the return value, first the Match method must be invoked on the
according action object representing the test and then the Modify method with
a match returned by the former method. Although the 1.3.1 API already had a
convenience function Apply to match and modify at once, it did not support return
values, yet. So the needed C# code for this example looks like this:

IEdge e = null;
((INode_Dummy) dummy).value = i;
LGSPAction action = Action_GetResource.Instance;
IGraphElement[] pars = new IGraphElement[] { n, dummy };
LGSPMatches matches = action.Match(graph, 1, pars);
i f (matches.Count != 0)
{

IGraphElement[] rets =
action.Modify(graph, matches.matches.First);

e = (IEdge) rets[0];
}

This code shows two more places of type unsafety: The parameters and the return
values. The unspecific parameter array pars has to be filled according to the order
of parameters given in the specification of the test. The return array rets works
analogously. Only at runtime the program fails if the types did not match the signature
in the rule specification file.

Using the API only: Another way to get the edge is to match the pattern manually via
the API:

IEdge e = null;
foreach(IEdge curEdge in n.GetCompatibleOutgoing(

EdgeType_Request.typeVar))
{

INode target = curEdge.Target;
i f (!target.InstanceOf(NodeType_Resource.typeVar)) continue;
i f (((INode_Resource) target.attributes).amount <= i) continue;
e = curEdge;

1.3. WHAT CAN BE DONE? 5

break;
}

Compared to the first choice, this is not only shorter, but also much easier to
understand. There is no need for a dummy element and no chance to mix up any
array indices. But the graph pattern is not clear at first sight anymore and the code is
still much more verbose than the rule specification. When it comes to bigger patterns,
this way becomes inacceptable for several reasons:

• The developer is responsible for choosing a suitable order for searching the
pattern elements, which is not a trivial task for complex patterns. Also he cannot
benefit from GrGen.NET’s search plan generation to adapt the search strategy
to changes in the graph structure.

• Small changes in the pattern may require non-trivial changes to the code to
preserve expected performance.

• The expressiveness of the code is very low compared to the rule specification, so
there are many possible errors, which could not even be formulated in the rule
specification in the first place.

• The obvious API functions for searching a pattern like INode.GetCompatible-
Outgoing are slow as they require C# enumerators which use closures to maintain
their state. The code generated by GrGen.NET is much more efficient for
larger patterns because it avoids the enumerators by using low-level API fields.
But the resulting code should not be written by hand as it is even more error
prone and less maintainable.

1.3 What can be done?

The above examples exposed that the API of GrGen.NET 1.3.1 has some severe problems
with type safety, which also negatively affects its usability. So the first important step
should be to improve the API accordingly (see section 4.1). Then, there are three options:

Live with the separation of declarative rule specification and imperative C# code.
With an improved API the rule applications could just look like method calls. But
if you just want to find one edge, the overhead of the declaration of an according
pattern and the method call passing the needed context explicitly as parameters is
quite huge compared to the pattern itself.

Specify patterns as strings passed together with the needed context to some API
function. Although this gives you the locality, it not only takes away type safety
inside the rule specifications but also static syntax checking. Only when a rule is
executed at runtime, errors will be reported. To circumvent this, a preprocessor could
extract all rules at compile time and check them, but to also check the types of the

6 CHAPTER 1. INTRODUCTION

parameters, a type analysis of the host language would be required, making up a
good part of a compiler.

Embed patterns into C# as part of some new specialized statements. This way we
get locality and type safety and do not have to specify the needed context anymore
because it can be done implicitly by the used identifiers. On the downside this requires
to develop a full compiler processing the new statements in addition to C#.

Since embedding patterns into C# provides the highest convenience and productivity
advantage, this option was chosen for this work, resulting in the new programming language
G#. As proof of concept the Mono C# compiler [Mon08a] was extended to support some
of the new constructs.

Outline

The rest of this work is structured as follows: In chapter 2 we have a look at related
work, chapter 3 consists of an analysis of typical scenarios of the development of an
application which makes use of graph rewriting, chapter 4 contains a discussion about
possible improvements of GrGen.NET and introduces the special language constructs
of G#, and in chapter 5 I describe how a compiler for the new language can be realized
by extending the Mono C# Compiler. Finally in chapter 6 the improvements achieved by
this work are shown and it is discussed about how the performance of GrGen.NET has
changed over several versions released while writing this work, and in chapter 7 I conclude.
Appendix A contains a definition of the newly introduced language constructs, appendix B
contains some examples working with the current implementation of the developed compiler.

Chapter 2

Related Work

In this chapter we have a look at some related work to see whether it can be of any help
to the goals of this work. At first we investigate, whether it is possible to specify graph
patterns satisfactorily in C# 3.0 using LINQ or with the help of a simple macro expanding
preprocessor. Then two embedded domain-specific languages (EDSLs) are presented as
examples, namely Embedded SQL and the graph transformation language XL. At the end
we consider three approaches to implement an EDSL for our case.

2.1 Simple Approaches

In this section I argue about two attempts to realize a convenient and type-safe programming
interface between graph rewriting and C# without the need of an extended C# compiler.

2.1.1 LINQ

LINQ (.NET Language Integrated Query [BH05]) is an extendable, declarative, general-
purpose query facility with compile-time syntax checking and static typing introduced with
C# 3.0. A query can filter and calculate complex information from “any IEnumerable<T>-
based information source” [BH05]. Considering a graph as information source there are
enumerables for nodes or edges with given types, and for incoming and outgoing edges
with given types from given nodes. The standard query operator ”where” filters data
according to a predicate. For graph rewriting such a predicate should be able to represent
a graph pattern. With the help of lambda expressions, the GrGen graph rewrite rule from
listing 2.1 could be represented as shown in listing 2.2. This lambda expression results
in an expression tree, which could be translated at runtime to a real graph rewrite rule.
Because assignments — and thus variable declarations and initializations — are not allowed
in expression trees, all variables and their types have to be specified as parameters of the
function representing the expression tree1. By using special functions (in this example

1The last type parameter of Func is the result type of the expression. Here it is used without any
special semantics in mind.

7

8 CHAPTER 2. RELATED WORK

Listing 2.1: An example GrGen rule utilizing several syntactic features

rule linqRule(Proc:Process, Res:Resource) : (Process)
{

hom(Proc, Res);
Proc -req:request- Res <-par:parent-> Proc;
i f { Res.UseCounter > 5; }
negative {

Proc <-:request- Proc;
}
modify {

delete(req);
newProc:Process -:request-> Res;
eval {

Res.UseCounter = Res.UseCounter + 1;
}
return (newProc);

}
}

param, hom, negative, modify, assign, and returns), which always have to be declared in
the current scope, most if not all features of GrGen can be syntactically emulated. With
the help of some special operator overloads for Minus and XOR, and some implicit casts,
the expression representation is even internally type-safe. But without a real signature, the
actual parameter and return types are unclear at first sight and cannot be checked statically.
To use such a graph rewrite expression, we have to use general methods with non-type-safe
parameters and return values. So although we get the locality with syntax similar to the
GrGen syntax, the type declarations of elements are very cumbersome and we still do not
get a type-safe programming interface between the graph rewrite rules and C#.

2.1.2 C Preprocessor

The C preprocessor is a simple macro expansion tool. Macro definitions can have any
number of parameters and may refer to previously defined macros. As the macro expansion
does not account for the C syntax, the context of a macro usage, such as the current scope
and the types of macro arguments, is not considered. Macro names may only be formed out
of characters, numbers and underscores, so special characters to represent e.g. edges would
not be possible. A representation of a graph pattern with macros would at most abbreviate
the definition of a pattern using the API a bit, so it is not suitable for our goals.

2.2 Embedded Domain-Specific Languages

Embedded domain-specific languages (EDSLs) are languages which have been extended
by a domain-specific language (DSL) to improve the productivity when working in the

2.2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES 9

Listing 2.2: A lambda expression to represent the GrGen rule from listing 2.1

Expression<Func<Process, Resource, request, parent, request, Process, request, bool>>
linqExp = (Proc, Res, req, par, noReq, newProc, newReq) =>

param(Proc, Res) &&
hom(Proc, Res) &&
Proc -req- Res ^par^ Proc &&
Res.UseCounter > 5 &&
negative (

Proc ^noReq- Proc
) &&
modify(

delete(req) &&
newProc -newReq^ Res &&
assign(Res.UseCounter, Res.UseCounter + 1) &&
returns(newProc)

);

domain of the DSL while keeping the full expressiveness of the host language (mostly a
general-purpose language (GPL))2. As this is exactly what we want with C# as the host
language, in this section we have a look at the most famous EDSL, Embedded SQL, to get
a basic understanding of what an EDSL is and at the Java-based graph rewriting language
XL to see what level of convenience has already been reached in our profession.

2.2.1 Embedded SQL

Embedded SQL is an ANSI standard from 1989 which partially defines the embedding of
SQL statements into Ada, C, COBOL, FORTRAN, Pascal, and PL/I [Sau02]. In 1992
the definition was completed by the ISO SQL-2 standard. The embedding brings several
benefits:

• An abstraction of the different SQL library APIs.

• Few additional language constructs, thus easy to learn (as long as SQL is known).

• SQL injection can partially3 be prevented at compile time.

• Easy implementation of a compiler (see below).

The embedded statements always begin with EXEC SQL followed by an SQL instruction like
SELECT, INSERT, or CREATE. To interact with the rest of the program, these instructions

2There are very different definitions of EDSLs. Here I stick with the interpretation used by Meta-
Borg [BV04], a method for implementing EDSLs (see also section 2.3.1).

3SQL injection may still be possible, when dynamical SQL statements for use with the EXECUTE or
PREPARE ... FROM command are built by concatenating commands and data carelessly without the use of
SQL parameters.

10 CHAPTER 2. RELATED WORK

can read and write specially marked variables of the surrounding program, so called host
variables. Processing multiple rows resulting from an SQL SELECT-query is done in an
iterative way using cursors. Errors, warnings or non-applicable statements which might
occur at any SQL statement can be handled via registered callbacks or loop breaks. A
precompiler translates the embedded SQL program into the host language, which can then
be compiled using a normal compiler for the language.

Listing 2.3 shows a small example with C as the host language printing the columns a

and b of all rows from the table tab for which a is greater or equal to 12. As this example
shows, the SQL statements do not fit to the style of the language. In C no two keywords
follow each other and blocks are always written with braces. Also the declare sections
appear unnecessary.

There are probably two reasons for this: Firstly, Embedded SQL was meant to be
applied to many languages with next to no changes, so people would know how to work
with it in any language, when they learned it for one. Secondly, the simple syntax allows
to use a compiler which only has to remember a very small context (the declared host
variables) and can directly emit host source code while parsing each line of the input source
code as no further analysis (especially no type analysis) is required. If the line does not
start with “EXEC SQL” and it is not inside a “DECLARE SECTION”, the line can just
be written out without modifications.

Listing 2.3: Embedded SQL in C example

EXEC SQL BEGIN DECLARE SECTION;
i n t val_a , val_b , min_a = 12;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur CURSOR FOR SELECT a, b FROM tab WHERE a >= :min_a;
EXEC SQL OPEN cur;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
wh i l e (1)
{

EXEC SQL FETCH NEXT FROM cur INTO :val_a , :val_b;
printf("%i, %i\n" , val_a , val_b);

}
EXEC SQL CLOSE cur;

2.2.2 XL

XL [Leh08] is a Java-based modelling language which offers concise formulations of graph
rewriting rules and graph queries. It uses Lindenmayer systems which have been extended
to rooted graphs with typed, attributed nodes and colored, directed simple edges. If a node
is not weakly connected to the root (anymore), it is not part of the graph and can therefore
not be matched as part of a graph rewrite rule. The nodes represent Java objects, whereas
edges are not much more than 32-bit integers. Limited support for multiedges and multiple
inheritance on edge types can be realized by interpreting the bits of the integer as edge
indicators of different edge types. Multiple inheritance on node types is only indirectly

2.2. EMBEDDED DOMAIN-SPECIFIC LANGUAGES 11

possible using interfaces. While GrGen.NET has built-in support for multiple inheritance,
in XL the developer has to manually implement the interfaces in the according classes. As
an undocumented feature, it is possible to “abuse” node types to instantiate edges, which
not only makes it possible to have typed, attributed edges but also to have multiedges. But
it is not possible to use a name for an edge in a graph pattern, so it is unclear how its
attributes can be accessed.

While in chapter 3 some more details about XLare presented, listing 2.4 tersely illustrates
some of its features:

Listing 2.4: XL syntax example adapted from [Leh08]

1 public void derivation() [
2 Axiom ==> F(1) RU(120) F(1) RU(120) F(1);
3 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
4]
5

6 public int distance(Individual a, Individual b) { return 1; }
7 public boolean isRelevant(F f) { return true; }
8

9 public void printLength(Individual c) {
10 System.out.println(sum(
11 (*
12 d:Individual,
13 ((d != c) && (distance(c, d) < 2)),
14 d (-(branch|successor)->)* f:F,
15 (isRelevant(f))
16 *).length));
17 }

Graph transformations are specified in so called transformation blocks delimited by
brackets (“[. . .]”) which either act as a statement or as a whole method body like in
lines 1–4. Each transformation rule is given by a left hand side (LHS), a right hand side
(RHS), and a production operator indicating a mode of the transformation. In line 2 all
nodes of type Axiom are replaced by a sequence of F and RU nodes implicitly connected
by successor edges. The production operator “==>” indicates that implicit embedding
should be used, i.e. all incoming/outgoing edges of the textually first/last node of the LHS
are to be connected to the textually first/last node of the RHS, respectively.

The LHS of a rule is a search pattern which can also contain any Boolean expressions as
conditions enclosed in parentheses including function calls (see lines 13 and 15) or transitive
closures of binary relations (see line 14 matching a path made of any combination of branch
and successor edges leading from d to a node of type F).

In the Java context the LHS of a rule can also stand for itself as a so called query
expression. The query expression in lines 11–16 yields all nodes f (as it is the textually
last node mentioned in a pattern context (“f:F”)) fulfilling this pattern. The result of a
query expression can be given to a new kind of for loop, which iterates over all yielded
values, or to two new types of methods: aggregate methods compute a single value from the
yielded values, whereas filter methods are used to yield only a part of them. By using the

12 CHAPTER 2. RELATED WORK

aggregate method sum in line 10 in conjunction with line 16 the length attributes of all
yielded F nodes are added up.

Summarizing the advantages of XL, we see:

• A very concise syntax with embedded graph transformations and queries yielding a
high productivity,

• aggregate methods abbreviating loops over graph query results for common and
user-defined tasks,

• graph element constructors for data initialization directly at element creation,

• support for object-oriented development by allowing the user to add methods to node
types,

• and (undocumented) visited flags.

But for the development of complex applications there are also several disadvantages:

• Due to the rooted graphs the developer has to be very careful when he deletes graph
elements. If he deletes the wrong element, the whole graph may vanish. Or he has to
make sure, that each element is connected to the root node, which further complicates
the graph rewrite rules.

• Edges cannot be referred to in graph rewriting rules and queries, so even with the
nodes abusing trick it is not possible to access the attributes without using the low
level API.

• XL uses many unintuitive and cryptic constructs which makes learning XL very
difficult.

• As the syntax of XL bases on Java 1.4, it does not support generics which have
become an important tool against code duplication and type-insafety.

Because of these disadvantages XL seems to be inappropriate for general complex appli-
cations utilizing graphs in this form and thus legitimates the development of the solution
presented in this work.

2.3 Ways to Implement an EDSL

In this section I discuss some ways of implementing an EDSL with C# as a host language
and explain which way has been chosen for this work.

2.3. WAYS TO IMPLEMENT AN EDSL 13

2.3.1 MetaBorg

“MetaBorg” introduced in [BV04] is “a method for providing concrete syntax for domain
abstractions to application programmers” [BV04]. It uses SDF [SDF08], a modular syntax
definition formalism, and Stratego/XT [Str08], a language and toolset for program trans-
formation, to embed a domain-specific language into a general-purpose language and to
assimilate the embedded code into the host language (source to source transformation).
With SDF it is even easy to integrate multiple different extensions into one host language
as described in [BV07], as long as you have the according SDF grammars. Sadly, a C#
grammar is not available for SDF, yet, whose creation would probably have taken too much
time for this work, considering the ambiguous grammar and the required type attribution.

2.3.2 C# Parser

“C# Parser” supplied at [DE08] is a fast, handwritten C# parser, which supports writing
the abstract syntax tree back to a C# source file. With the extensions to support the G#
language it would have been possible to also do source to source transformations. But there
were several problems: The parser was barely able to parse C# 2.0. After some work on
improving this situation until it passed all test cases of the Mono C# compiler, I realized
that the associativity of the expressions was wrong in most situations. Christoph Mallon
and I then reimplemented the expression and statement parser, so that all test files of the
Mono C# compiler passed even with explicit marking of associativity using parentheses
in the unparsed output. While working on this parser and developing the G# language, I
began to realize that some type analysis would be required for a semantic analysis of the
new constructs to ensure type-safety. But a type analysis was not even partly implemented
in the parser. And considering that the project was already dead since May 20074, this
project finally also failed to qualify for this work. Newer versions of C# like the current 3.0
would probably never be supported by it.

2.3.3 The Mono C# Compiler

Finally the choice fell on the C# compiler of Mono 1.9 [Mon08b], because Mono is an
actively developed project supported by a large community and a big sponsor (Novell).
According to [Mon08a] it fully supports C# 2.0, while the C# 3.0 features are still being
developed. In contrast to the C# parser project, as a full compiler it provides type analysis
usable for semantically checking the new constructs. But on the downside it is rather
slow and provides no way of emitting the processed source code back into a file making
debugging the compiler more difficult. The .NET decompiler Reflector [Lut08] attenuates
the latter drawback, as the generated code can be easily inspected in form of C# code.
Also the compiler is not designed to be extended, further complicating the implementation

4Recently (in August 2008), this project has been revived and our changes have been applied to the
project. So it was not a complete waste of time after all.

14 CHAPTER 2. RELATED WORK

as a G# compiler. Still I considered this the only chance to get a working implementation
after I had already lost so much time on the “C# Parser”-project.

Chapter 3

Scenario and Problem Analysis

In this chapter several typical scenarios for graph application development are presented.
For each scenario, implementations using GrGen.NET 1.3.1 are discussed and compared
to solutions written in XL, the previously only embedded graph rewriting language known
to me, to find out advantages and disadvantages of both systems. Although the presented
scenarios were chosen to be general and representative, there may be some typical scenarios
I missed. But by basing the language developed in this work on a general purpose language,
it would still be possible to solve these scenarios. Just not necessarily as convenient as it
could be, if special support was available.

The examples in this chapter are based on the description of the AntWorld case study
proposed by Albert Zündorf for the GraBaTs 2008 tool contest [Zü08]. Although it is just
a toy example, it is able to cover most scenarios. Because of its simple graph model, the
scenarios can be easily described. Chapter 6 contains an evaluation of the results on the
basis of a real world application.

3.1 Model Specification

The first thing we need when developing a graph rewrite application is a graph model
(also known as meta model). It describes the type hierarchy of the graph elements, their
attributes, and in some systems enforced or unenforced assertions about the structure of a
graph model instance (i.e. the structure of a graph).

As an example consider a graph which contains a quadratic grid of GridNodes connected
by GridEdges with additional diagonal edges towards the center. All (more or less) radial
edges are special GridEdges called PathToHill. The center of the grid shall be an AntHill
modelled as a special GridNode. For each GridNode we want to know how much food
and pheromones it contains, which should be initialized as empty. AntHill nodes however
start with 8 food units. Since an ant hill without ants is missing something, we also have
Ants located on the grid, who may carry some food and whose positions are modelled by
AntPos edges pointing to the according GridNode. To define an order on the Ants, we
connect them via a singly linked list using NextAnt edges.

15

16 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

GrGen.NET: GrGen.NET’s graph models are specified in .gm files. Although they
support assertions about the structure of a graph in form of so called connection
assertions, they are too simple to exactly specify the above described graph model,
because they can only describe the local structure of a graph. E.g. it is not possible
to state, that there is exactly one list of Ants or that the grid is really quadratic. So
the following graph model specifies a super set of the one described above:

node class GridNode {
food:int;
pheromones:int;

}
node class AntHill extends GridNode {

food = 8;
}
node class Ant {

hasFood:boolean;
}
edge class GridEdge connect GridNode[*] --> GridNode[*];
edge class PathToHill extends GridEdge connect inherited;
edge class AntPos connect Ant[1] --> GridNode[*];
edge class NextAnt connect Ant[0:1] --> Ant[0:1];

The interpretation of this graph model is straightforward: GridNode is a node type
with the two integer attributes food and pheromones. AntHill is a subtype of
GridNode and initializes the food attribute with 8 instead of the default value 0.
For (virtual) multiple inheritance on node or edge types more than one super type
separated by commas can be added behind extends. GridEdge is an edge type which
may connect GridNodes without restrictions on the out and in degree. Its subtype
PathToHill inherits the connection assertions from GridNode. Ants are represented
as Ant nodes with a Boolean attribute hasFood. Their positions are modelled as
AntPos edges from each Ant to the according GridNode. While any number of Ants
may stand on one GridNode (unlimited in-degree [*] which is equivalent to [0:*]),
one Ant stands on exactly one GridNode (out-degree [1] which is equivalent to [1:1]).
The connection assertions are not enforced but can be validated on demand to check
the integrity of the graph. If the expressiveness of the connection assertions is not
sufficient, a Turing-complete mechanism can be used applying an XGRS to a copy of
the graph. The graph is then said to be valid, if the XGRS succeeds.

If the filename of the above listing is “AntWorld.gm”, a model class with the
name de.unika.ipd.grGen.models.AntWorld.AntWorldGraphModel will be gener-
ated. But an actual graph is represented by a general LGSPGraph instance whose
Model property just points to an instance of the according model class. Thus the
compiler cannot statically distinguish graphs of different models (not type-safe) and
no convenience methods for creating graph elements of the according model can be
made available. It is possible though to manually define subclasses of LGSPGraph
using the according models to achieve this.

3.1. MODEL SPECIFICATION 17

XL: XL neither has a concept of explicit graph models nor of constraints on the graph
structure. Any Java class inheriting from de.grogra.graph.impl.Node can be used as
a node type. All other types, like String, int , or a class not inheriting from the node
implementation class, are implicitly wrapped when used in graph patterns, and thus
can also be used as node types. Edge types are just bit masks represented by integer
constants1.

The simplest way of programming with XL is using an .rgg file: It holds the whole
project in an implicit class derived from the XL API class RGG, whose instances
represent graphs. In such a file, the element types required for our example could be
declared like this:

class GridNode {
int food, pheromones;
GridNode() {}
GridNode(int food) {

this.food = food;
}

}
class AntHill extends GridNode {

AntHill() {
super(8);

}
}
class Ant {

boolean hasFood;
}
const int RealGridEdge = EDGE_0;
const int PathToHill = EDGE_1;
const int GridEdge = RealGridEdge | PathToHill;
const int AntPos = EDGE_2;
const int NextAnt = EDGE_3;

The Java classes GridNode, AntHill and Ant can be used as node types, while
the RealGridEdge, PathToHill, GridEdge, AntPos, and NextAnt constants can
be used as edge types. The EDGE n constants represent single bits of the edge
integers, which can be used by the user. When searching for a GridEdge between
two nodes, the corresponding edge integer is masked with GridEdge and such an
edge is said to be found, when the result is not null. So this would be true for both a
RealGridEdge and a PathToHill edge. On the other side, when we want to create
a real GridEdge (i.e. not a PathToHill edge), we may not create a GridEdge, but
must use a RealGridEdge as it does not contain the bit of PathToHill.

The GridEdge could also be interpreted as an edge type inheriting from both
RealGridEdge and PathToHill. To search for an exact GridEdge between two nodes
a and b, the pattern “a -GridEdge-> b, (a.getEdgeBitsTo(b) == GridEdge)” would have
to be used, which is very inconvenient to write.

1Keep in mind, that XL does not support real edge attributes.

18 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

To simplify the declaration and usage of node types, XL provides special syntax for
declaring them, so called modules :

module GridNode(int food) {
int pheromones;

}
module AntHill(super.food) extends GridNode {

{ food = 8; }
}
module Ant(boolean hasFood);
const int RealGridEdge = EDGE_0;
const int PathToHill = EDGE_1;
const int GridEdge = RealGridEdge | PathToHill;
const int AntPos = EDGE_2;
const int NextAnt = EDGE_3;

The first three lines declare the GridNode node type with the integer attributes food
and pheromones and the constructors GridNode() and GridNode(int food). The
following three lines declare the AntHill node type as a subtype of GridNode with
the constructors AntHill() and AntHill(int food) where the latter is supposed to
set the food attribute to the given value. But as we want the initial value of food
for an AntHill to always be 8 and are too lazy to use the second constructor, we
have to initialize food in an instance initialization block, what effectively makes the
AntHill(int food) constructor useless for the moment. Still the module version of
GridNode is more concise than the pure Java approach.

Another advantage of using the module declarations is, that you can use the specified
constructor not only for constructing new elements of this type, but also for matching
them. Writing AntHill(5) on the LHS of a rule would only match AntHill nodes
with the food attribute being 5. On the other hand AntHill(f) on the LHS matches
any AntHill node and assigns the value of the food attribute to a new local variable
f , if f does not exist as a local variable, yet. If such a local variable already exists,
the node is restricted to those with the food attribute value being f . To restrict the
food attribute to the value of a field f , one would have to use an expression which is
not a single identifier like AntHill((f)) or AntHill(this.f).

While modules can implement any number of interfaces using the “implements”
keyword, they cannot extend more than one other module. This makes multiple
inheritance on node types much more verbose, as the interfaces have to be implemented
manually in all according modules. Of course, the same applies to the Java class way
of node types. But as modules are transformed to Java classes, it is also possible to
declare methods in them well supporting object-oriented development.

As mentioned above, a graph is represented as an RGG instance. If multiple (different)
graphs are required, you should probably2 use an .xl file, which is similar to an .rgg file

2It is unclear, if this is the best way to do it. The XL distribution does not contain an example using
multiple graphs, just like GrGen.NET.

3.2. RULE SPECIFICATION 19

but has neither implicit embedding into an RGG subclass nor implicit imports. Thus
you can manually define different RGG subclasses to be able to statically distinguish
between different types of graphs. But it is not possible to state which element types
are allowed in which graph type. All element types are allowed in any graph type, so
it is type-safe with respect to different graphs. However, due to scoping you would
have to qualify an element type of another graph type inside a pattern, so it is not
too easy to make a mistake here.

Considering the GrGen.NET graph models and the XL modules, we can extract these
advantageous features:

• An explicit graph model (GrGen.NET)

• Straightforward support of (virtual) multiple inheritance (GrGen.NET)

• Constructors usable in both patterns and rewrite parts (XL)

• Element methods (XL)

• Support for graph structure assertions (GrGen.NET)

3.2 Rule Specification

With the graph model defined, we can now specify rules to work on the graph. Generally a
graph rewrite rule describes a pattern to look for (the left-hand-side, LHS), another pattern
which shall replace the LHS (the right-hand-side, RHS), and possibly a mode, how this
rule is to be applied.

As an example consider we have a given Ant which should go one step towards the hill,
if it carries food and place a given number of units of pheromones at the old position.

GrGen.NET 1.3.1: Graph rewrite actions are specified in .grg files. GrGen.NET
knows two kinds of actions: Rules and tests. Rules are normal graph rewrite rules
with a LHS and a RHS, whereas tests only have a LHS and are meant to only check
for the existance of a pattern. Although both action kinds can receive and return
any number of graph elements (as specified by the declaration, of course), they do
not support values like integers, strings, or object references. So in order to pass the
number of pheromones to an action, we have to use a wrapper graph element. Here
we will use a new node type DummyInt with the integer attribute value.

A rule for this example is shown in listing 3.1. The rule named GoHome with the
parameters curAnt of type Ant and dummy of type DummyInt consists of a LHS
made of one attribute condition (line 3) and one graphlet (line 4), and the RHS
which modifies the LHS (lines 6 – 12). The LHS says, that the hasFood attribute of
curAnt must be true and that curAnt must be connected via an AntPos edge to the
old GridNode which must have a PathToHill edge to the GridNode the Ant has to

20 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

Listing 3.1: The example rule written in the rule specification language of GrGen.NET.

1 rule GoHome(curAnt:Ant, dummy:DummyInt)
2 {
3 i f { curAnt.hasFood; }
4 curAnt -oldPos:AntPos-> old:GridNode -:PathToHill-> new:GridNode;
5

6 modify {
7 eval {
8 old.pheromones = old.pheromones + dummy.value;
9 }

10 delete(oldPos);
11 curAnt -:AntPos-> new;
12 }
13 }

move to. If the LHS is found, the RHS will add dummy.value units of pheromones
to the old GridNode and transfer the Ant from the old to the new GridNode, by
deleting the old AntPos edge and creating a new one between curAnt and new. So
again, this is straightforward.

Instead of a “modify” part, also a “replace” part could be used where all elements of
the LHS not mentioned on the RHS are deleted.

XL: As mentioned in the previous chapter, in XL rules are specified inside transformation
blocks delimited by brackets (“[. . .]”) acting as normal Java statements. All rules in
a transformation block are applied in a way, as if they were executed simultaneously.
All matches and the according changes are saved, but do not take effect until a so
called derivation step is performed, which is explained in section 3.3.

A rule consist of a graph query specifying the pattern (LHS), a production opera-
tor determining the mode of the rule, and so called graph statements defining the
replacement (RHS). XL supports three production operators:

“==>>”: This declares a normal rule, where the LHS is replaced by the RHS with
SPO-like semantics (remember that XL uses rooted graphs).

“==>”: This results in a normal rule with implicit embedding, which means, that
all “incoming (resp. outgoing) edges of the textually leftmost (resp. rightmost)
nodes of” the LHS are connected “to the textually leftmost (resp. rightmost)
nodes of” the RHS ([KKBS05]).

“::>”: An execution rule executes a statement given as the RHS for each found
match of the LHS.

The above example could be implemented as shown in listing 3.2. It declares a normal
Java method GoHome with the parameters curAnt of type Ant and incrPher of type
int. The braces of the method body block can be omitted when it would only contain

3.3. SIMPLE RULE EXECUTION 21

Listing 3.2: An XL version of the example rule.

1 public void GoHome(Ant curAnt, int incrPher)
2 [
3 (curAnt.hasFood)
4 curAnt -AntPos-> (* old:GridNode -PathToHill-> next:GridNode *)
5 ==>>
6 curAnt -AntPos-> next { old.pheromones += incrPher; };
7]

a transformation block. The transformation block consists of a single rule without
implicit embedding. Line 3 in the transformation block is a condition predicate which
must evaluate to true for the LHS to match. As such a predicate is an expression, it
can also contain any method calls. While this can be very convenient, it may cause
unexpected behaviour if the called methods have side-effects. Line 4 describes the
graph pattern and additionally states that both GridNodes and the PathToHill edge
belong to the context of the pattern, i.e. they should not be deleted, if they are not
mentioned on the RHS, unless they are also mentioned outside of context parentheses.
The RHS is pretty straightforward: As the old AntPos edge is not mentioned on
the RHS it is removed, and a new AntPos edge to the next GridNode is created.
Additionally the pheromones counter of the old GridNode is incremented.

When we compare the GrGen.NET and the XL solution, we see, that the slightly more
verbose version of GrGen.NET is intuitively understandable, while it is unclear what
XL’s context parentheses and the “==>>” production means without reading the sparse
documentation and several examples. However, treating a rule as a language statement or
as a method seems very useful for an imperative (object-oriented) language.

3.3 Simple Rule Execution

After specifying a rule, the next important question is, how to execute them.

GrGen.NET 1.3.1: GrGen.NET uses search plan driven graph pattern matching as
described in [Bat06] and [BKG08]. At run-time, the user can trigger an analysis of
the current graph structure and create new rule instances with potentially better
search plans to speed up rule execution (see line 12 and 13 of the listing below).
These dynamically generated rule instances can be accessed through the according
LGSPActions rule container (see line 17).

Because the initial graph is always empty and an analysis on an empty graph is
not very expedient, GrGen.NET uses so called static search plans as initial rule
instances. To adumbrate the expected graph structure for single rules, the user
may annotate some elements of the patterns with a search priority. For example
“hill[prio = 10000] : AntHill;” in a pattern indicates that this AntHill is a very

22 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

good point to start searching. Using these annotations the user can sometimes avoid
dynamically creating search plans to save some time and simplify the use of the
rule. The GoHome rule instance with a static search plan for the example from the
previous section can be accessed as “Action GoHome.Instance” (see line 9).

Whenever the matcher of a rule is invoked, you can specify, after how many matches
the matcher shall stop searching. The high-level API of GrGen.NET 1.3.1 only
uses two amounts, one and all possible (infinity), thus allowing two modes of rule
execution:

• The normal mode searches for one match and rewrites it (see line 9).

• The “all at once”-mode searches for all matches in the graph, and then rewrites
them one after the other ignoring any conflicts (see line 17). These conflicts
include adding edges to a node, which is deleted by rewriting another match, or
negative application conditions triggered by changes caused by another rewrite.
Here the user is responsible for preventing conflicts.

1 // Initialize graph and the actions container

2 LGSPGraph graph = new LGSPGraph(new AntWorldGraphModel());
3 AntWorldActions actions = new AntWorldActions(graph);
4

5 ... // Some initialization, also declaring LGSPNode curAnt

6

7 // Apply GoHome rule to one occurrence of the pattern

8 // using the static search plan

9 Action_GoHome.Instance.Apply(graph, curAnt, dummyInt);
10

11 // Generate a new search plan for the GoHome rule

12 graph.AnalyzeGraph();
13 actions.GenerateSearchPlans(Action_GoHome.Instance);
14

15 // Apply GoHome rule to all occurrences of the pattern at once

16 // using the dynamically generated search plan

17 actions.GetAction("GoHome").ApplyAll(graph, curAnt, dummyInt);

But as shown in the introduction, return parameters can only be accessed via the
low-level API in GrGen.NET 1.3.1. Consider a rule with the following header:

rule RuleA(a:Ant, -p:PathToHill->) : (GridNode, PathToHill)

To apply this rule once, you have to use something like this:

INode ant;
IEdge homeWay;
...
INode destGridNode = null;
IEdge nextWayHome = null;
LGSPAction ruleA = actions.GetAction("RuleA");
IGraphElement[] pars = new IGraphElement[] { ant, homeWay };

3.3. SIMPLE RULE EXECUTION 23

LGSPMatches matches = ruleA.Match(graph, 1, pars);
i f (matches.Count != 0)
{

IGraphElement[] rets = action.Modify(graph, matches.matches.First);
destGridNode = (INode) rets[0];
nextWayHome = (IEdge) rets[1];

}

The C# compiler has no chance to verify, that the types and the order of the rule
parameters and return values are correct. If the developer mixes them up or changes
the rule declaration, this will only be noticed at runtime and because the return values
are also only casted to unspecific types, an error may occur at a much later place.

Although in the version developed here the high-level API has been adapted to make
handling return parameters easier, the new version of the above example is only a bit
more type-safe:

IAnt ant;
IPathToHill homeWay;
...
IGridNode destGridNode = null;
IPathToHill nextWayHome = null;
LGSPAction ruleA = actions.GetAction("RuleA");
object[] rets = ruleA.Apply(graph, ant, homeWay);
i f (rets != null)
{

destGridNode = (IGridNode) rets[0];
nextWayHome = (IPathToHill) rets[1];

}

Still, both the parameters and the return values are not type-safe (the Apply method
takes any number of object instances after the first parameter), but if the return value
types are wrong, it will crash there immediately instead of somewhere else.

Another way to apply the rule in GrGen.NET 1.3.1 is to use extended graph rewrite
sequences (XGRS)3, which supply logical and iterative sequence control over several
rules and support nested transactions. To communicate between the caller and the
XGRS and between rules inside the XGRS, named but typeless variables are used
which are managed by the graph. So when ant and homeWay are already stored in
graph variables, we can formulate the example like this:

INode destGridNode = null;
IEdge nextWayHome = null;
i f (actions.ApplyGraphRewriteSequence("(dest, next)=RuleA(ant, homeWay)"))
{

destGridNode = (INode) graph.GetVariableValue("dest");
nextWayHome = (IEdge) graph.GetVariableValue("next");

}

3“Extended” compared to the old C implementation of GrGen.

24 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

This XGRS executes the rule RuleA once (normal mode) with the parameters ant and
homeWay and stores the results in the graph variables dest and next if the pattern has
been found (otherwise they stay untouched). ApplyGraphRewriteSequence, which
should probably be renamed to ApplyXGRS for brevity, returns the result of the
XGRS, which is true for a rule, if the pattern was found. The all-at-once mode version
of the XGRS would be “(dest, next)=[RuleA(ant, homeWay)]”.

Of course, the string of the XGRS is only evaluated at runtime, so — additionally
to order mix-ups — this may lead to parsing errors and use of unknown variables
at runtime. The latter isn’t even an error because of questionable semantics of rule
applications with undefined parameters. Last but not least parsing and interpreting
the string causes additional runtime overhead.

XL: As described in the previous section, in XL no changes to the graph induced by
transformation blocks take effect until a derivation step, which is triggered by a call
to derive. The derivation mode decides what happens:

• In PARALLEL MODE all changes take effect, ignoring any conflicts.

• In PARALLEL NON DETERMINISTIC MODE almost all changes take
effect: If one node is deleted by several applications, only one of these applications
is chosen randomly.

• In SEQUENTIAL MODE only the first application is used.

• In SEQUENTIAL NON DETERMINISTIC MODE one application is
chosen randomly.

Per default the derivation mode additionally has an EXCLUDE DELETE FLAG
set indicating, that no node used by an application may have been deleted or it’s
changes will not be applied.

Note, that a transformation block can contain multiple rules, so with the last mode
and some loops you can easily simulate AGG’s [ERT99] rule layers, where all rules in
one layer are applied in a random order until none of the rules are applicable anymore.

Given a curAnt variable of type Ant and a incrPher variable of type int, executing
the GoHome rule as defined in the last section in XL is not more than:

GoHome(curAnt, incrPher);
derive();

However, if you need a rule, which returns more than one element or value, you have
to use either an object or static fields. Let us have a look at the XL version of the
RuleA application: First we have to note, that we cannot access edges in patterns
and that patterns only support simple edges (in contrast to multiedges). Although
we could use the API to traverse all adjacent edges to find the correct edge object,
we will just let RuleA return the source and the target nodes of the edge.

3.4. EXECUTING MANY RULES 25

module RuleATriple(GridNode dest, GridNode nextSrc, GridNode nextTgt);

public RuleATriple RuleA(Ant a, GridNode pSrc, GridNode pDest) {
...
i f (!found) return null;
derive();
return new RuleATriple(dest, nextSrc, nextTgt);

}

...

GridNode destGridNode = null;
GridNode nextWayHomeSrc = null, nextWayHomeTgt = null;
RuleATriple res = RuleA(a, pSrc, pDest);
i f (res != null) {

destGridNode = res.dest;
nextWayHomeSrc = res.nextSrc;
nextWayHomeTgt = res.nextTgt;

}

Although the edges are not handled very nicely and the user has to manually manage
the result object, this solution is still much better than the GrGen.NET solutions,
as it is inherently type-safe. Although the module notation already saves much time,
it would be nice to use a generic class instead. Sadly, XL does not support them
though.

Comparing GrGen.NET and XL we see, that the normal rule application mode of
GrGen.NET is the same as XL’s SEQUENTIAL MODE when the derive method is
called after each rule, and the all-at-once mode is similar to the PARALLEL MODE
without the EXCLUDE DELETE FLAG. For the AntWorld test case an additional
rule execution mode has been implemented in the proposed version of GrGen.NET, which
I just mention here because it is not a significant feature for this work: The random-
match-selector mode first finds all matches of a pattern and then randomly selects n
to be applied. An XGRS randomly selecting 4 matches of RuleA is written as “(dest,
next)=$4[RuleA(ant, homeWay)]”. This new mode is comparable to XL’s SEQUENTIAL -
NON DETERMINISTIC MODE for which this n would always be 1.

Looking at how rules encapsulated in methods (or similar) are applied, we saw that
neither GrGen.NET nor XL comes up with a type-safe and convenient solution for rules
returning more than one element or value. But at least GrGen.NET’s way of specifiying
multiple return values for an action is convenient.

3.4 Executing Many Rules

In complex graph transformation scenarios many rules have to be executed, partially
depending on the results of other rules. Here results are not only the return values but also

26 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

whether or not they matched at all. Rules may need to be executed iteratively for a given
number of times or as long as possible.

As an example we take the sequence control of the GrGen.NET AntWorld solution
submitted to the GraBaTs 2008 except for the fair random choosing of the ant’s ways: The
simulation is executed for a given number of rounds (here 250). In every round first each
ant is moved, then it is checked, whether an ant has reached the border of the grid making
it necessary to extend it, then all dropped food units in the ant hill are transformed to ants,
and at last the pheromones on each grid node are reduced.

An ant’s move is determined as follows: if the ant can take food, it does so and starts
going back to the ant hill dropping pheromones on the path, which ends this round for the
ant. If it already carries food, it also goes towards the ant hill ending the round for the
ant. If the ant is already at the ant hill, it drops the food and continues searching. When
searching, the ant tries to follow a pheromone path away from the ant hill. But if no such
exists, it just heads for any direction.

When the grid has to be extended, first one node of the outer grid is extended, then all
others are extended and connected to the according previous new node. Lastly, the first
and the last new nodes are connected. As the grid nodes in the corners are extended by
three new nodes rather than just one, they are handled by special rules.

GrGen.NET 1.3.1: This is an ideal case for graph rewrite sequences (XGRS):

1 actions.ApplyGraphRewriteSequence(
2 "(curAnt=firstAnt && "
3 + "(("
4 + " TakeFood(curAnt) | GoHome(curAnt) ||"
5 + " DropFood(curAnt) | (SearchAlongPheromones(curAnt) ||"
6 + " SearchAimless(curAnt))"
7 + ") && (curAnt)=GetNextAnt(curAnt))*"
8 + "| ((cur)=ReachedEndOfWorld"
9 + " && ((cur, curOuter)=GrowWorldFirstNotAtCorner(cur)"

10 + " || (cur, curOuter)=GrowWorldFirstAtCorner(cur))"
11 + " && ((cur, curOuter)=GrowWorldNextNotAtCorner(cur, curOuter)"
12 + " || (cur, curOuter)=GrowWorldNextAtCorner(cur, curOuter))*"
13 + " && GrowWorldEnd(cur, curOuter))"
14 + "| (curAnt)=Food2Ant(curAnt)*"
15 + "| [EvaporateWorld]"
16 + ")[250]");

Lines 2–7 iterate over each ant and move them, lines 8–13 expand the grid if required,
line 14 emerges one ant per food unit, line 15 lets the pheromones evaporate a bit,
and line 16 closes the main loop iterating through 250 rounds.

As mentioned in the previous section, the string is only checked at runtime which is a
big disadvantage. Also the numerous string concatenations add much unnecessary
noise. Using multi-line verbatim strings would help, but is not yet supported by the
XGRS parser because of the new-line characters.

3.5. GRAPH MODIFICATION 27

XL: Assuming that all rules are declared like the rules in the GrGen.NET implementation,
return false or null if no match was found, and that the GrowWorld . . . Corner rules
return a GridTuple containing two GridNodes, it could be implemented in XL as:

1 for(1:250) {
2 Ant curAnt, nextAnt = firstAnt;
3 do {
4 curAnt = nextAnt;
5 TakeFood(curAnt) | GoHome(curAnt) ||
6 DropFood(curAnt) | (SearchAlongPheromones(curAnt) ||
7 SearchAimless(curAnt));
8 }
9 while((nextAnt = GetNextAnt(curAnt)) != null);

10 GridNode cur = ReachedEndOfWorld();
11 i f (cur != null)
12 {
13 GridTuple gt = GrowWorldFirstNotAtCorner(cur);
14 i f (gt == null) gt = GrowWorldFirstAtCorner(cur);
15 GridNode curOuter;
16 do {
17 cur = gt.first;
18 curOuter = gt.second;
19 } while((gt = GrowWorldNextNotAtCorner(cur, curOuter)) != null

20 || (gt = GrowWorldNextAtCorner (cur, curOuter)) != null);
21 GrowWorldEnd(cur, curOuter);
22 }
23 while((curAnt = Food2Ant(curAnt)) != null) {}
24 EvaporateWorld();
25 }

In contrast to Java, XL allows expressions to be used as statements like in C.
This makes it possible to connect rules with Boolean operators very similar to
GrGen.NET’s XGRSs (see lines 5–7). While the XGRSs only assign values to
the given return variables if the rule succeeds, assignments like in line 9 always
assign a value. So, to implement the XGRS “(curAnt) = GetNextAnt(curAnt)” an
additional variable nextAnt is needed, which is only assigned to curAnt once after
the declaration and when GetNextAnt succeeded (see line 4).

GrGen.NET’s XGRSs provide an easy way to control the execution of many rules using
Boolean and iterative operators, but they can quickly become difficult to understand if the
expressions are too deeply nested and badly indented. On the other side the implementation
in XL is not necessarily more understandable. Especially because of the problems with
multiple return values the code is more verbose.

3.5 Graph Modification

When working with graphs, we sometimes want to change the graph unconditionally and
perhaps at a-priori known places. We can distinguish between four scenarios here: The

28 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

creation and initialization of single elements, the deletion of single elements, and more
complex irregular and regular graph modifications.

3.5.1 Creation and Initialization of Single Elements

Consider you want to create a new Ant already carrying food at the AntHill given as hill
and store it in the local variable ant.

GrGen.NET 1.3.1: Defining and executing a graph rewrite rule induces quite some
overhead, so for this small example using the API is shorter:

LGSPNode ant = graph.AddNode(NodeType_Ant.typeVar);
((INode_Ant) ant.attributes).hasFood = true;
graph.AddEdge(EdgeType_AntPos.typeVar, ant, hill);

As mentioned in the introduction, this shows some problems:

• Compared to the informal description of this example, this solution is very
verbose, making it more difficult to understand while skip-reading it. The
domain-specific syntax of GrGen.NET would be much better.

• The ant variable has a very unspecific type, prohibiting type-safe use across
several functions and easy access to the attributes. Accessing attributes in this
type-unsafe way can introduce errors, which will only be noticed at runtime,
when an invalid cast exception occurs.

XL: In XL it’s as simple as:

Ant ant;
[==> a:Ant(true) -AntPos-> hill, { ant = a; };]

At first sight it’s clear what’s happening, as long as you use a naming convention
clearly differentiating between element types and local variables, and remember that
we defined the Ant constructor to take the initial value for the hasFood attribute.
The only thing spurious here is the explicit assignment from the graph variable to the
local variable.

3.5.2 Deletion of Single Elements

Now we want to delete an Ant given as ant with all its adjacent edges.

GrGen.NET: Again using the API leads to the shortest implementation for this example:

graph.RemoveEdges(ant);
graph.Remove(ant);

3.5. GRAPH MODIFICATION 29

First we have to remove the adjacent edges and then remove the Ant node itself. As
the Remove method is a low-level method, this is unnecessarily verbose. Probably it
should be renamed to RemoveNode and a new Remove method should be introduced
calling RemoveEdges and RemoveNode.

XL: Here we get:

[ant ==>>;]

This is as short as it can get. But we should note here, that an RGG unit (the
class in which an .rgg file is embedded) always has an associated graph and that all
transformation blocks operate on this graph. To operate on another graph one would
probably have to call a custom method in the other RGG unit. Also it seems, that
all nodes have to be reachable by a so called RGGRoot node. So if ant was the only
connection of the rest of the graph to the RGGRoot node, the graph will be empty
afterwards. If the “==>” production operator is used instead though, all outgoing
edges from ant will be redirected to come from the RGGRoot node, so the elements
reachable over these edges will still be part of the graph. This very unexpected
behaviour makes it much more difficult to work with XL as a graph rewrite system.

3.5.3 More Complex Graph Modifications (irregular)

As a somewhat more complex, but irregular example we construct “The House of St. Nik’s”
out of GridNodes and GridEdges and assign 100 food units to the bottom nodes.

GrGen.NET 1.3.1: For this example it is better to declare a rule in a .grg file:

rule BuildStNikHouse {
modify {

a:GridNode;
b:GridNode; c:GridNode;
d:GridNode; e:GridNode;

eval { d.food = 100; e.food = 100; }

d -:GridEdge-> b -:GridEdge-> a -:GridEdge-> c -:GridEdge-> b
-:GridEdge-> e -:GridEdge-> d -:GridEdge-> c -:GridEdge-> e;

}
}

And invoke it from C# code:

Action_BuildStNikHouse.Instance.Apply(graph);

Here we can use the static version of the action to apply the rule to the graph, as it
does not depend on any search plan anyway (empty pattern).

30 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

XL: In XL it is again just one transformation block:

[==>
a:GridNode,

b:GridNode, c:GridNode,
d:GridNode(100), e:GridNode(100),

d -GridEdge-> b -GridEdge-> a -GridEdge-> c -GridEdge-> b
-GridEdge-> e -GridEdge-> d -GridEdge-> c -GridEdge-> e;

]

Comparing both solutions, they look very similar. The XL solution uses the nice custom
constructors to initialize the bottom GridNodes, while GrGen.NET has to initialize them
manually in one or more eval blocks. While the advantage of the constructors may not
become very clear in this example, consider what the GrGen.NET solution would look like
for a RHS with 39 graph elements and 35 attribute initializations4. As XL’s transformation
blocks are normal statements, there is no need to split rule declaration and rule execution.

3.5.4 More Complex Graph Modifications (regular)

For a regular example let us attach 8 new Ants to an AntHill given as hill and connect
them as a singly linked list using NextAnt edges. We want the first Ant of the list to be
stored in the local variable firstAnt and the last one in lastAnt. Because the function
which initiates the creation of the ants is already complex enough, the graph modification
should be written somewhere else.

GrGen.NET 1.3.1: One rule creates all elements manually:

rule CreateAnts(hill:AntHill) : (Ant, Ant) {
modify {

a1:Ant -:AntPosition-> hill <-:AntPosition- a2:Ant;
a3:Ant -:AntPosition-> hill <-:AntPosition- a4:Ant;
a5:Ant -:AntPosition-> hill <-:AntPosition- a6:Ant;
a7:Ant -:AntPosition-> hill <-:AntPosition- a8:Ant;

a1 -:NextAnt-> a2 -:NextAnt-> a3 -:NextAnt-> a4
-:NextAnt-> a5 -:NextAnt-> a6 -:NextAnt-> a7 -:NextAnt-> a8;

return (a1, a8);
}

}

And the C# code calls the rule and extracts the return values:

4See the “InitExample” rule from the UML2CSP example shipped with GrGen.NET. The initialization
of the attributes was not only tedious but also very error prone, so I forgot to initialize one element and
initialized one element twice when I wrote it down the first time. With element constructors this could not
have happened in the first place.

3.5. GRAPH MODIFICATION 31

INode firstAnt = null, lastAnt = null;
LGSPAction action = Action_CreateAnts.Instance;
LGSPMatches matches = action.Match(graph, 1, new IGraphElement[] { hill });
i f (matches.Count != 0)
{

IGraphElement[] rets = action.Modify(graph, matches.matches.First);
firstAnt = (INode) rets[0];
lastAnt = (INode) rets[1];

}

For small graph initializations this may be acceptable, but for larger ones using the
API makes more sense:

public void CreateAnts(INode hill, out INode firstAnt, out INode lastAnt)
{

firstAnt = lastAnt = null;
for(int i = 0; i < 8; i++)
{

INode a = graph.AddNode(NodeType_Ant.typeVar);
graph.AddEdge(EdgeType_AntPos.typeVar, a, hill);
i f (lastAnt != null)

graph.AddEdge(EdgeType_NextAnt.typeVar, lastAnt, a);
else

firstAnt = a;
lastAnt = a;

}
}

...

INode firstAnt, lastAnt;
CreateAnts(hill, out firstAnt, out lastAnt);

XL: Again we need a special class to return two elements in a type-safe way:

module TupleAntAnt(Ant first, Ant second);

public TupleAntAnt CreateAnts(AntHill hill) {
Ant first = null, last = null;
[==>

for(1:8) (
a:Ant -AntPos-> hill,
i f (last != null)

(last -NextAnt-> a)
else

{ first = a; },
{ last = a; }

);
]
return new TupleAntAnt(first, last);

32 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

}

...

TupleAntAnt res = CreateAnts(hill);
Ant firstAnt = res.first;
Ant lastAnt = res.second;

Here we can use a for and an if graph statement on the RHS of the rule to build
the 8 ants and handle the singly-linked list. Besides for and if , XL also provides
switch, do-while, while and synchronized as imperative control statements for the RHS
of a rule.

The XL API solution looks very similar to the GrGen.NET 1.3.1 API solution, but is
clearer by using domain-specific syntax for element creation. The special support for the
imperative control statements does not seem to be necessary and also does not fit to the
declarative character of the GrGen.NET rules.

3.5.5 Conclusion

As we saw in this section, domain-specific syntax embedded in the host language is especially
important for small to medium changes, where you do not want to explicitly call a rule
defined somewhere else and loose all context. Here the easy propagation of graph elements
(and other values) to local variables and vice versa is a must. For medium to large
modifications it is absolutely legitimate to put them somewhere else in most situations.

3.6 Working with Matches

In several situations you need to do something with a match of a rule what cannot be done
on the RHS of the rule. You may need to

• do complicated attribute calculations,

• do further checks whether the match is really what you want,

• choose some of the available matches, or

• start looking for matches of another rule depending on the current match.

As a simple example we want to move an Ant given as ant to a surrounding GridNode with
the most pheromones. To avoid requiring quadratic time to find this Ant, the solution should
iterate over the matches and remember the current match with the most pheromones5.

5This could be done automatically when this condition was directly formulated in the pattern with the
help of a negative application condition, but GrGen.NET is not able to optimize this and I doubt XL can
do this.

3.6. WORKING WITH MATCHES 33

GrGen.NET 1.3.1: For this example we are going to find all matches, then select one
with the highest amount of pheromones, and finally apply the change to that one. So,
first, we have to define a rule:

rule MoveAnt(ant:Ant) {
ant -p:AntPos-> :GridNode <-:GridEdge-> nextNode:GridNode;
modify {

delete(p);
ant -:AntPos-> nextNode;

}
}

Then we specify the C# code finding all possible ways (see line 4 below), selecting
our favorite (see lines 5–14) and moving the Ant to the best GridNode (see line 16):

1 int maxPheromones = -1;
2 LGSPMatch maxMatch = null;
3 LGSPAction moveRule = actions.GetAction("MoveAnt");
4 LGSPMatches matches = moveRule.Match(graph, 0, new IGraphElement[] { ant });
5 foreach(LGSPMatch match in matches)
6 {
7 INode nextNode = match.nodes[Rule_MoveAnt.NodeNums.nextNode];
8 int curPheromones = ((INode_GridNode) nextNode.attributes).pheromones;
9 i f (curPheromones > maxPheromones)

10 {
11 maxPheromones = curPheromones;
12 maxMatch = match;
13 }
14 }
15 i f (maxMatch != null)
16 moveRule.Modify(graph, maxMatch);

Of course, we could also use two rules for finding and rewriting the match to make it
a bit clearer, but it would require more code.

XL: The XL code is very similar to the GrGen.NET 1.3.1 solution, but uses two
embedded rules for the small patterns:

int maxPheromones = -1;
GridNode bestNode = null;
[

ant -AntPos-> GridNode -GridEdge- g:GridNode
::>
{

i f (g.pheromones > maxPheromones)
{

maxPheromones = g.pheromones;
bestNode = g;

}
}

]

34 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

i f (bestNode != null)
[

ant -AntPos-> (* GridNode *)
==>
ant -AntPos-> bestNode;

]

Again the embedded domain-specific code is more concise and makes the intention of
the code much clearer.

3.7 Graph Traversal

In compiler construction it is often important to apply optimization rules in a specific
order to avoid optimizing unreachable code, for instance. Therefore, the intermediate
representation (IR) graph is typically traversed in depth-first-search (DFS) order using pre-
and/or post-walkers, which execute user-specified code before and after visiting a node,
respectively. Sometimes this code starts another DFS e.g. to search previous instructions
writing to the same memory location as a current store instruction. To simulate a similar
case in the AntWorld environment, the exercise is to start a DFS at the AntHill searching
the subgraph induced by PathToHill edges against their orientation. For each found Ant,
another DFS should be started at the Ant’s position to find a path back to the AntHill
with no Ant obstructing the way. If no such path is found, the Ant is to be removed.

GrGen.NET 1.3.1: Version 1.3.1 neither supports high-level graph traversals nor visited
flags at all, so this example has to be implemented using the low-level API and hash
maps to keep track of visited elements. First we create a class which can be used for
generic DFS pre-walking:

public enum WalkerResult
{

Proceed, Skip, Abort
}

public delegate WalkerResult PrewalkHandler(INode curNode);
public delegate void AddChildrenHandler(INode curNode, Stack<INode> nodeStack);

public class DFS
{

public static void DoDFS(INode startNode, PrewalkHandler prewalk,
AddChildrenHandler addChildren)

{
Dictionary<INode, object> visitedSet = new Dictionary<INode, object>();
Stack<INode> nodeStack = new Stack<INode>();
nodeStack.Push(startNode);

while(nodeStack.Count > 0)
{

3.7. GRAPH TRAVERSAL 35

INode curNode = nodeStack.Pop();
i f (visitedSet.ContainsKey(curNode)) continue;
visitedSet[curNode] = null;

WalkerResult res = prewalk(curNode);
i f (res == WalkerResult.Skip) continue;
i f (res == WalkerResult.Abort) break;

addChildren(curNode, nodeStack);
}

}
}

The DFS.DoDFS method receives the node where to start the DFS, a pre-walker
handler, and a handler responsible for choosing the children of the according current
node. The pre-walker handler determines, whether the current node’s children should
be visited or not or the whole DFS should abort here. The Dictionary (representing
a hash map) prevents a node from being visited more than once.

The example shall start searching for Ants at the AntHill (line 1) along incoming
PathToHill edges (lines 23–27). If it finds any Ants (line 8) which cannot reach
the AntHill without being blocked by other Ants (line 10), the Ants at the current
GridNode shall be removed from the graph (lines 12–17):

1 DFS.DoDFS(antHill, Prewalk, AddChildren);
2

3 ...
4

5 WalkerResult Prewalk(INode curNode)
6 {
7 // If the curNode has an incoming AntPos edge, we found one or more Ants

8 i f (curNode.GetExactIncoming(EdgeType_AntPos.typeVar).GetEnumerator().MoveNext())
9 {

10 i f (!CheckReachable(curNode, antHill))
11 {
12 foreach(IEdge antpos in curNode.GetExactIncoming(EdgeType_AntPos.typeVar))
13 {
14 INode ant = antpos.Source;
15 graph.RemoveEdges(ant);
16 graph.Remove(ant);
17 }
18 }
19 }
20 return WalkerResult.Proceed;
21 }
22

23 void AddChildren(INode curNode, Stack<INode> nodeStack)
24 {
25 foreach(IEdge edge in curNode.GetExactIncoming(EdgeType_PathToHill.typeVar))
26 nodeStack.Push(edge.Source);
27 }

36 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

The CheckReachable method starts another DFS looking for an unobstructed way
to the AntHill:

1 bool CheckReachable(INode from, INode to)
2 {
3 bool found = false;
4 DFS.DoDFS(from,
5 /* Prewalk */ delegate(INode curNode)
6 {
7 i f (curNode == to)
8 {
9 found = true;

10 return WalkerResult.Abort;
11 }
12

13 i f (curNode != from && curNode.GetExactIncoming(EdgeType_AntPos.typeVar).
14 GetEnumerator().MoveNext())
15 return WalkerResult.Skip;
16

17 return WalkerResult.Proceed;
18 },
19 /* AddChildren */ delegate(INode curNode, Stack<INode> nodeStack)
20 {
21 foreach(IEdge inEdge in curNode.GetCompatibleIncoming(
22 EdgeType_GridEdge.typeVar))
23 nodeStack.Push(inEdge.Source);
24 foreach(IEdge outEdge in curNode.GetCompatibleOutgoing(
25 EdgeType_GridEdge.typeVar))
26 nodeStack.Push(outEdge.Target);
27 }
28);
29 return found;
30 }

If the DFS has found the destination node, it aborts the search and returns true
(lines 7 – 11). If it comes to a node, which is not the current start node and which is
occupied by an Ant (lines 13 – 15), the DFS skips its children, which are defined as any
adjacent nodes connected by a GridEdge (lines 21 – 26). Using C# delegates for the
handlers provides a very good locality for the very simple handler implementations.

XL: XL does not support high-level graph traversals, too, but through an “Persistence-
Manager” it provides (undocumented6) visited “marks” which can be used in our
generic DFS pre-walker class instead of a hash set:

public abstract class DFS {
public const int PROCEED = 0;
public const int SKIP = 1;
public const int ABORT = 2;

6Actually I found out about XL’s visited marks 1.5 months after I added them to GrGen.NET.

3.7. GRAPH TRAVERSAL 37

PersistenceManager manager;

public DFS(PersistenceManager manager) {
this.manager = manager;

}

public void doDFS(Node startNode) {
int visitedMark = manager.allocateBitMark(false);

Stack nodeStack = new Stack();
nodeStack.push(startNode);

while(nodeStack.size() > 0) {
Node curNode = (Node) nodeStack.pop();
i f (curNode.setBitMark(visitedMark, true)) continue;

int res = prewalk(curNode);
i f (res == SKIP) continue;
i f (res == ABORT) break;

addChildren(curNode, nodeStack);
}

manager.disposeBitMark(visitedMark, true);
}

abstract int prewalk(Node curNode);
abstract void addChildren(Node curNode, Stack nodeStack);

}

This does the same as the GrGen.NET 1.3.1 version except that it uses those
visited marks needing allocation and disposal instead of a hash map.

The first DFS is also very similar:

1 new DFS(getPersistenceManager()) {
2 int prewalk(Node curNode) {
3 // If the curNode has an incoming AntPos edge, we found one or more Ants

4 i f (!empty((* curNode <-AntPos- Node *))) {
5 i f (!CheckReachable(curNode, antHill)) [
6 (* curNode <-AntPos- *) Ant ==>;
7]
8 }
9 return PROCEED;

10 }
11 void addChildren(Node curNode, Stack nodeStack) {
12 for((* curNode <-PathToHill- n:Node *))
13 nodeStack.push(n);
14 }
15 }.doDFS(antHill);

38 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

Checking for any Ants indicated by incoming AntPos edges can be formulated nicer
than in the GrGen.NET solution with XL’s queries and the aggregation function
empty (line 4). A query returns all matching elements corresponding to the textually
rightmost pattern element (Node in this case). Iterating over the children can also be
simplified using a query (line 12). The use of an embedded rule makes removing all
Ants at curNode more concise (line 6).

The CheckReachable method also profits from queries, but needs an instance variable
to save the found result:

boolean found;

public boolean CheckReachable(final Node from, final Node to) {
found = false;
new DFS(getPersistenceManager()) {

int prewalk(Node curNode) {
i f (curNode == to) {

found = true;
return ABORT;

}

i f (curNode != from && !empty((* curNode <-AntPos- Node *)))
return SKIP;

return PROCEED;
}
void addChildren(Node curNode, Stack nodeStack) {

for((* curNode -GridEdge- n:Node *))
nodeStack.push(n);

}
}.doDFS(from);
return found;

}

The comparison between GrGen.NET and XL again shows the advantages of domain-
specific syntax over conventional API calls. With the comments “Prewalk” and “AddChil-
dren” the basic structure of the GrGen.NET version of CheckReachable already looks
quite nice and does not need an allocation of the DFS class. Of course, being able to also
specify a post-walker would be nice, too. It was just left out here to keep the example small
and to be able to use a single stack to implement it.

Supporting visited flags directly in the graph rewrite system makes it possible to manage
these flags more efficiently. For example by saving the flags in the graph elements themselves
instead of an external hash map, not only the overhead of the hash value calculation, but
also of the additional objects can be saved.

3.8. CONCLUSION 39

3.8 Conclusion

The different properties of XL and GrGen.NET 1.3.1 presented in this chapter are
summarized and rated in table 3.1 with respect to the goals of this work, i.e. convenience
(Con) and type safety (TS). While the convenience rating tries to describe how nice it is to
work with a criterion (obviously subjective), the static type safety rating states whether
the provided types ensure correct use already at compile time. The ratings are + + for
perfect, + for good, o for acceptable, - for bad, - - for very bad. ××× means “not available”
or “not supported”. In the following subsections the criteria and their ratings for XL and
GrGen.NET 1.3.1 are briefly described.

3.8.1 Model

Graph: The expressiveness of graphs.

XL: Convenience: Typed, attributed nodes (+). Colored, directed simple edges (o).
Support for using node types for edges7 allowing typed, attributed multiedges
(+). While rooted graphs may be useful in some domains, in general they are
not (-).

Type safety: Everything is allowed as a node or an edge, so there cannot occur
any run-time errors. (+)

GrGen.NET 1.3.1: Convenience: Typed, attributed nodes (+). Typed, attributed,
and directed multiedges (+).

Type safety: Present (+).

Multiple graph models: Can multiple graph models be handled?

XL: Convenience: For multiple graph types the user has to fall back from the
convenient RGG classes to .xl files to declare differently typed graph classes (o).
XL does not have explicit graph models (-). But element types can be declared
in the scope of graph types, so that they must be qualified when used in another
graph type (o).

Type safety : The graph classes are meant to have special types subclassed from
RGG, so it is type-safe (+).

GrGen.NET 1.3.1: Convenience: Although it is possible to specify, reuse, and
combine different explicit graph models (+), one .grg file can only use one specific
graph model combination (×××). On the API-level, a general graph type is used,
not providing any convenience methods for creating special graph elements8 (-).

Type safety : On the API-level, all graph instances have the same type (-).

7Implicitly resulting in an “-in_edge-> node -out_edge->” construct.
8Note, that this is not needed in XL because of the embedded rules.

40 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

XL GrGen.NET
1.3.1

Con TS Con TS

Model:
Graph o + + +
Multiple graph models (s/A) o + ×××/o ×××/-
Graph structure assertions ××× ××× + +
Node types (spec/API) o + + +/-
Edge types (spec/API) - - - + +/-
Attribute access (spec/API) ++ + ++/- - +/-
Constructors (node/edge) +/××× +/××× ××× ×××
Element methods (node/edge) +/××× +/××× ××× ×××
Embedding + + ××× ×××
Rules:
Modes + + o +
LHS and RHS o + o +
Parameters (spec/API) ++ + o +/-
Returns (spec/API) - + o/- +/-
Outer access to LHS ++ + - -
Outer access to RHS o + ××× ×××
Embedding + + ××× ×××
Rule execution:
Graph queries + + ××× ×××
XGRS ××× ××× - -
Boolean combination - + ××× ×××
- without returns + + - -
Graph traversal:
Visited flags + - ××× ×××
DFS - - - ××× ×××
Other traversals ××× ××× ××× ×××

Table 3.1: Comparison of different features of XL and GrGen.NET 1.3.1 in terms of
convenience (Con) and type safety (TS)

3.8. CONCLUSION 41

Graph structure assertions: Assertions on the structure of a graph.

XL: Not supported (×××).

GrGen.NET 1.3.1: Convenience: Simple, yet useful assertions for node-edge-
nodebetween two node and one edge type (+).

Type safety : Unaffected (+).

Node types: Properties of node types.

XL: Convenience: Node types are attributed and support normal Java inheritance
(+), multiple inheritance only manually using interfaces (-). Concise definition
of node types with attributes possible (+).

Type safety : All node types are special types (+).

GrGen.NET 1.3.1: Convenience: Native attributed node types (+) with multiple
inheritance (+).

Type safety : While the specification can distinguish all types (+), on the API-
level, there is only one type for all nodes (-).

Edge types: Properties of edge types.

XL: Convenience: Edge types, however, do not support attributes (-) and inheritance
has to be emulated using bit flags (- -).

Type safety : Any integer could be used as a edge type (-).

GrGen.NET 1.3.1: Convenience: Native attributed edge types (+) with multiple
inheritance (+).

Type safety : While the specification can distinguish all types (+), on the API-
level, there is only one type for all edges (-).

Attribute access: How can attributes be accessed in rules and via the API?

XL: Convenience: Intuitive attribute access with the “.” operator throughout the
language (+ +).

Type safety : Present (+).

GrGen.NET 1.3.1: Convenience: Intuitive attribute access with the “.” operator
in rule specification (+ +), but very inconvenient attribute access via API
because of access over attribute field (- -).

Type safety : The attribute field must be cast to the correct type in order to
access the attributes, what can fail at runtime (-).

Constructors: Constructors of graph element types.

XL: Convenience: Node types support constructors which can be used both on the
LHS and the RHS (+). Edge types do not support them.

Type safety : The constructors are bound to their types and therefore always
type-safe (+).

42 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

GrGen.NET 1.3.1: Not supported (×××).

Element methods: Is it possible to declare methods in element types?

XL: Convenience: Node types support element methods (+). Edge types do not.

Type safety : Present (+).

GrGen.NET 1.3.1: Not supported (×××).

Embedding: Is it possible to declare graph types in the “normal” source code?

XL: Convenience: Yes, either implicitly in .rgg files or explicitly in .xl files (+).

Type safety : Present (+).

GrGen.NET 1.3.1: Not supported (×××).

3.8.2 Rules

Modes: Available rule modes.

XL: Convenience: Three different, but unintuitive production operators (o). Several
derivation modes (+).

Type safety : Present (+).

GrGen.NET 1.3.1: Convenience: Only test/rule and modify/replace (o).

Type safety : Present (+).

LHS and RHS: The left and right hand side of graph rewrite rules.

XL: Convenience: Concise but unintuitive syntax (o). Transitive patterns (+).
Method calls can be used as pattern predicates (+). Edges cannot be refered to
(-). No syntactic differentiation between unnamed pattern element declarations
and variable accesses (-). No syntactic differentiation between in and out
parameters of constructors on the LHS (-).

Type safety : Present as non element types are implicitly wrapped (+).

GrGen.NET 1.3.1: Convenience: Straightforward syntax (+). No dynamic pat-
terns (-).

Type safety : Rule specifications are strongly typed (+).

Parameters: Parameters of rules “called” in some way. For XL this means, that the rule
is wrapped by a method.

XL: Convenience: Natural parameter passing according to method declaration (+).
All parameter types are supported (+).

Type safety : Present (+) unless deliberately prevented.

3.8. CONCLUSION 43

GrGen.NET 1.3.1: Convenience: Variadic parameter passing, thus no parameter
information available (o). Only graph elements can be passed to a rule (o).

Type safety : Although the rule specification handles parameters type-safe (+),
the API receives the parameters in a general graph element array, and thus
allows the user to pass an edge for a node parameter and vice versa and to pass
a wrong number of parameters (-).

Returns: Return values of rules “called” in some way like above.

XL: Convenience: Only one return value possible, more return values have to
wrapped by a helper object (-).

Type safety : Type-safe, when the user defines custom helper objects for each
combination of returned types (XL bases on Java 1.4 and thus does not provide
generics) (+)

GrGen.NET 1.3.1: Convenience: Any number of return values supported, but
only graph elements can be returned (o). No convenience API available when
using return values (-).

Type safety : Again the rule specification is type-safe with respect to return values
(+), but the API uses one simple array of graph elements for all returned nodes
and edges, which could also be accessed with wrong indices (-).

Outer access to LHS: How can matched graph elements of the LHS of a rule be accessed
by imperative code executed before or instead of a RHS without “returning” the
elements explicitly?

XL: Convenience: Inside the imperative code of an execution rule, the LHS elements
can just be accessed via their names (+ +). There is no simpler way than that.

Type safety : The names refer to elements with the correct type (+).

GrGen.NET 1.3.1: Convenience: Elements must be manually extracted from
element kind specific arrays (-).

Type safety : Array indices cannot be verified at compile-time (-).

Outer access to RHS: How can elements of the RHS of a rule be accessed by imperative
code executed after the rule without “returning” the elements explicitly? A typical
example would be the creation of a graph element from an embedded rule and its use
outside of the rule.

XL: Convenience: Elements must be manually assigned to a variable or field of the
outer scope (o).

Type safety : Present (+).

GrGen.NET 1.3.1: Not supported (×××).

44 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

Embedding: Is it possible to embed graph rewrite rules in the “normal” source code?

XL: Convenience: Yes, in so called transformation blocks (+).

Type safety : Present (+).

GrGen.NET 1.3.1: Not supported (×××).

3.8.3 Rule Execution

Graph queries: Are graph queries supported?

XL: Convenience: Yes, together with aggregation and filter functions they can
simplify queries in many situations (+).

Type safety : Present (+).

GrGen.NET 1.3.1: Not really supported: enumerations on element types are too
simple for this criterion.

XGRS: Support for extended graph rewrite sequences.

XL: Not supported (×××).

GrGen.NET 1.3.1: Convenience: Supported by API (+). Parameters and return
values have to be accessed via graph variables (-). Much noise due to string
handling of XGRS (-).

Type safety : String is interpreted at run-time, so besides wrong names even
syntactic errors are possible (-)

Boolean combination: Is it possible to combine several “rule applications”9 directly
with Boolean operators like in XGRSs?

XL: Convenience: Support for expression statements (+). Boolean combination
becomes more verbose when return values are used (-). Return values are also
assigned, when a rule fails (-). Rule methods must trigger derivation steps (o).

Type safety : Present (+).

GrGen.NET 1.3.1: Not supported (×××). because of missing convenience function
for rule application with return values.

Boolean combination without returns: This criterion is similar to “Boolean combi-
nation” but here only “rule applications” not returning any values (except success
and failure) are considered.

XL: Convenience: Support for expression statements (+). Rule methods must
trigger derivation steps (o).

Type safety : Present (+).

GrGen.NET 1.3.1: Convenience: Dummy variables necessary because C# has no
expression statements (-).

Type safety : General graph element array for parameters (-).

9Method calls for XL.

3.8. CONCLUSION 45

3.8.4 Graph Traversal

Visited flags: The existance of visited flags.

XL: Convenience: (Undocumented) visited flags (+).

Type safety : Any integer could be used as a handle for a so called “bit mark”
and no error is reported at run-time, when the handle is not valid (-).

GrGen.NET 1.3.1: Not supported (×××).

DFS: Support for traversing a graph in depth-first order.

XL: Convenience: There seems to be undocumented support for some kind of
visitors which can be used to traverse the graph in depth-first order, but it is
unclear how they work10 (- -).

Type safety : The visitors receive unspecific Object references (-).

GrGen.NET 1.3.1: Not supported (×××).

Other traversals: Support for any other graph traversals, like breadth-first-search or
some weighted searchs.

XL: Seems not to be supported.

GrGen.NET 1.3.1: Not supported (×××).

10de.grogra.graph.Graph.accept in combination with a de.grogra.graph.V isitorImpl subclass and an
de.grogra.graph.EdgePattern instance. Using these classes like in de.grogra.graph.impl.Node.cloneGraph
did not work, though. Not a single element was found.

46 CHAPTER 3. SCENARIO AND PROBLEM ANALYSIS

Chapter 4

Proposed Solutions

This chapter contains a discussion about what can be done to improve the GrGen.NET
solutions of the typical scenarios of the previous chapter. In the first part of this chapter
I describe changes to the API of GrGen.NET 1.3.1, in the second part some new
features are added to GrGen.NET, and in the third part an embedded domain-specific
language G# extending C# by special constructs for graph rewriting with GrGen.NET
is introduced.

4.1 GrGen.NET API Changes

An important weapon against many programming errors is static typing as supported by
C#. If an API has adequately diverse types and the parameters of methods are accordingly
constricted, most type-related errors can already be caught at compile-time. For the API
of GrGen.NET 1.3.1 this is not the case: Sections 3.3 and 3.5.1 indicated that the API
has some serious problems with type-safety. But this not only applies to the elements and
their attributes, but also to their meta-types and to graph instances. In this section the
type-safety is improved also resulting in a much more convenient programming interface.

4.1.1 Assimilating Attributes into Graph Elements

Nodes in GrGen.NET 1.3.1 are represented solely as generic LGSPNode objects imple-
menting the INode interface (edges analogously as LGSPEdges implementing IEdge) (see
figure 4.1). Elements store their attributes in an external type-specific object implementing
the (empty) IAttributes interface. The virtual multiple inheritance of the element types is
implemented using .NET’s multiple inheritance on interfaces.

Using an external object for the attributes has some advantages:

• Retyping an element can be done by simply exchanging its ITypeFramework and
IAttributes fields representing their type and attributes by new objects according to
the new type. Only the common attributes have to be copied, which is implemented
using reflection. No adjacent elements need to be adapted.

47

48 CHAPTER 4. PROPOSED SOLUTIONS

IGraphElement

INode

IAttributes

INode Node

INode A INode B

INode AB

LGSPNode
attributes

Node Node

Node A

Node AB

Figure 4.1: The node representation in GrGen.NET 1.3.1

• The size of a graph element object is independent of the number of attributes, so
elements with many attributes take less space in the processor cache during a matching
process, when the attributes are not touched, than they would take, if the attributes
were stored inside the elements.

But accessing the attributes of a new element in C# is quite a hassle:

LGSPNode ant = graph.AddNode(NodeType_Ant.typeVar);
((INode_Ant) ant.attributes).hasFood = true;

This not only leads to lengthy code but also to runtime cast exceptions, when the programmer
mixes up the types. Also an LGSPNode could have any node type, so only variable names
can help making the code understandable when elements are passed to methods.

Starting with GrGen.NET 1.4, the element attributes are stored directly in the
graph elements by merging the type-specific object classes and the according LGSPNode
or LGSPEdge class. With version 2.0 the root element types Node and Edge do not
implement special INode Node and IEdge Edge interfaces anymore (see figure 4.2), which
added nothing to the general interfaces anyway. Also the “Node ” and “Edge ” prefixes
have been removed to provide the developer with exactly the names specified in the model.
He still has to live with the distinction between the interfaces and the concrete types of the
elements, though, because classes do not allow multiple inheritance in C#.
But the new element representation introduces some disadvantages:

• Retyping a graph element creates a new object and requires all adjacent elements to
be updated. All references to the retyped element become invalid. The same happens
when an element is deleted (just as it was before in GrGen.NET 1.3.1).

• Searching through a list of graph elements with many attributes causes more cache
pollution.

• Directly reusing elements deleted by the RHS of a rule is only possible for elements
with the exact same type. Thus this optimization is useless for most rules.

4.1. GRGEN.NET API CHANGES 49

IGraphElement

INode

IA IB

IAB

LGSPNode

Node

B

AB

Figure 4.2: The improved node representation in GrGen.NET 2.0

To shorten these disadvantages the following changes have been implemented:

• To recognize invalid elements produced by retyping or deleting, the properties
IGraphElement.V alid, IGraphElement.ReplacedByElement, INode.ReplacedBy-
Node, and IEdge.ReplacedByEdge have been introduced.

• LGSPNode/LGSPEdge.Get/SetAttribute now work without reflection. For each
element type custom methods are generated to speed up attribute access via attribute
names.

• The use of reflection for element retyping has been replaced by custom methods, too.

• Cloning of elements uses copy constructors with custom code instead of the reflection-
based Object.MemberwiseClone().

• As direct element reuse during a rewrite of a match is not possible anymore for most
rules, element pooling has been introduced, which stores up to 10 deleted elements of
each type for later reuse1. This makes it even possible to reuse elements beyond rule
boundaries.

GrGen.NET 2.0 realizes type-safe element creation over static methods in the element
classes creating and adding a new instance of the according element to a given graph. So
now you can write the above code much more concisely and type safe:

Ant ant = Ant.CreateNode(graph);
ant.hasFood = true;

With the not yet implemented constructors this could even be:

Ant ant = Ant.CreateNode(graph, true);

1The value 10 was chosen to avoid keeping too many elements in the cache during the available
benchmarks. But a reasonable value is highly problem specific, so an adaptive or user-definable value might
be desirable.

50 CHAPTER 4. PROPOSED SOLUTIONS

4.1.2 Refactoring the Graph Model API Architecture

The graph model architecture of the GrGen.NET 1.3.1 API is not able to statically
distinguish between node and edge models, and node and edge types. Type models just
inherit from the general ITypeModel interface and element meta-types from the IType
interface (see figure 4.3). Users were able to put edge types into node creation functions.
In some cases even without an immediate runtime error!

TypeFramework
subclass

TypeFramework
subclass

. . . TypeFramework
subclass

TypeFramework

ITypeFramework

IType

ITypeModel ITypeModel
* *

IGraphModel
node model edge model

Figure 4.3: The type architecture of GrGen.NET 1.3.1

To solve this problem, the graph model architecture has been restructured in version 1.4.
A concrete element type model now implements either INodeModel or IEdgeModel, and
concrete element types inherit either from NodeType or EdgeType (see figure 4.4). More
abstract access is provided through ITypeModel and GrGenType. To get access to an
instance of a given (meta-)type the static TypeInstance property of the according element
class can be used. This keeps any arbitrary pre- or suffixes of class names off the user.

NodeType
subclass

. . . NodeType
subclass

EdgeType
subclass

. . . EdgeType
subclass

NodeType GrGenType EdgeType

INodeModel ITypeModel IEdgeModel

* * *

IGraphModel
node model edge model

Figure 4.4: The improved type architecture of GrGen.NET 1.4

With the new structure, errors like creating nodes out of edge types are now reported at
compile-time. Also the maintainability of both the user and the library source code have
been improved by this change, as for method parameters and return values it is now much
clearer what you are holding in your hand and what you are allowed to do with it.

4.2. NEW GRGEN.NET FEATURES 51

4.1.3 Type-safe Handling of Graphs

GrGen.NET 1.3.1 represents concrete graph objects by general LGSPGraph instances.
Their Model property points to the according instance of a specific model class which was
used to instantiate the graph. In an application with multiple graphs of different graph
models this again leads to problems with too unspecific types: A method receiving an
LGSPGraph object could get a graph instantiated with any graph model, although it only
supports a special one. For example it adds a node whose type only exists in this graph
model. Thus it should only be possible to pass graphs of the correct model to the method.

By merging LGSPGraph and the specific model classes, GrGen.NET 2.0 again
achieves better type-safety: Now the method parameter declaration can constrain which
graph model must be used. So, for such methods passing wrong graphs is not possible
anymore. Additionally it is now possible to provide model specific convenience methods for
element creation, which especially make code completion features of editors more useful.

4.2 New GrGen.NET Features

Some solutions for the problems of the last chapter require new features to be added to
GrGen.NET. For example it must be possible to pass/return an integer value easily
to/from a graph rewrite rule to allow transparent access to local variables and parts of the
graph patterns. In this section I describe these new features.

4.2.1 Element Constructors

To get rid of the sometimes large textual distances between element creation and attribute
initialization (cf. section 3.5.3), bodyless constructors are added to element types, whose
parameters are just the names of the attributes to be initialized (see first parameter in
line 8 in listing 4.1). They take effect as if they were executed after all attribute initializers
(like in line 2). Similar to C++ the last parameters may be annotated with default values,
so that these parameters can be omitted when the constructor is used on the RHS of a rule
(see all other parameters in line 8).

Listing 4.1: A small GrGen.NET model using a constructor

1 node class Font {
2 fontname:string="Verdana";
3 height:int=10;
4 bold:boolean;
5 italic:boolean;
6 underlined:boolean;
7

8 Font(height, fontname="Arial", bold=false, italic=false, underlined=false);
9

10 // Alternative constructor
11 // Font(height, fontname="Arial");
12 }

52 CHAPTER 4. PROPOSED SOLUTIONS

But for elements with many default parameters where you only want to set one or two of
them depending on the case, this only helps when these parameters are declared as one of
the first default parameters. A typical example for an element, for which this is not the
case, comes from GUI programming: The Font node class in listing 4.1 always requires
a height parameter, but the name of the font and whether the font is bold, italic, and/or
underlined are optional (see line 8). So if you wanted to instantiate an underlined “Courier”
font of height 12 on the RHS, with the C++-like syntax you would have to specify all
parameters of the constructor, although most of them would receive their default values:

:Font(12, "Courier", false, false, true);

By additionally allowing to use named parameters for all attributes not used as positional
parameters, this can be avoided and the constructor use can become easier to understand,
if there is no sensible order on the attributes. With named parameters the constructor can
also be simplified by removing all default parameters whose values equal the default values
of the according attributes (see line 11). So now we can write:

:Font(12, "Courier", underline=true);

A (parameterless) default constructor always implicitly exists. This way the user can
always initialize any combination of element attributes with named parameters. The default
constructor may be overwritten by a constructor with only optional parameters. If used
without parameters, the default constructor may be written with or without parentheses to
keep compatibility to previous versions of GrGen.NET.

Analogously to the subpatterns introduced by [Jak08] the constructors can not only
be used on the RHS to instantiate an element, but also on the LHS to match one. The
default values are ignored, though: only those attributes, which are explicitly given by
either a positional or a named parameter, add a constraint to the according pattern element.
Otherwise, very confusing errors would be possible, when default parameters were used
without care. Thus, with the “Alternative constructor” of listing 4.1 the Font constructor
in line 1 of listing 4.2 matches any italic font, the one in line 3 matches any font with height
9, and the last constructor in line 4 matches any underlined “Courier” font with height 12.

Listing 4.2: An action using constructors on the LHS

1 test FontTest(f1:Font(italic=true))
2 {
3 f2:Font(9);
4 f3:Font(12, "Courier", underline=true);
5 }

4.2.2 Non-Graph-Element Parameters and Return Values

To allow reasonable parameterization of graph rewrite rules (i.e. without creating elements
dedicated to parameter transfer) and interaction between C# and GrGen.NET, the rules
need to be able to get and return variables from the C# context. This can be achieved by

4.2. NEW GRGEN.NET FEATURES 53

using action parameters for C# variables read in an action and using action return values
for changed variables. Analogously to the syntactic differentiation between nodes and edges
for action parameters in the GrGen.NET syntax, variable parameters are prefixed by the
new var keyword. Parameter return types are just given directly. Listing 4.3 shows a small
example rule with the two variable parameters i and str: It matches a Resource node with
an amount greater or equal to the given integer i and pointed to by a given Process node.
For such a match, the resource amount is reduced by i, and a string formed from the given
string str and the new amount is returned.

For the API this change means, that several functions now work on object instances
instead of IGraphElement instances. Especially graph variables may now also be non-
graph-element values. With the GrShell the rule from the example could be invoked as
shown in listing 4.4: First an initialization rule is called which returns a Process node.
Then we initialize the variable intV alue with the integer 7. The example rule can simply be
called by providing the needed arguments in an xgrs command, where we pass “Remaining
donuts” as the string parameter. If the matched Resource node had an Amount of 10
before rewriting it, the answer variable will be set to the string “Remaining donuts: 3”.

Listing 4.3: Example of a GrGen.NET rule with variable parameters and return values

rule varExample(var i:int, p:Process, var str:string) : (string)
{

p --> r:Resource;
i f { r.Amount >= i; }
modify {

eval {
r.Amount = r.Amount - i;

}
return (str + ": " + r.Amount);

}
}

Listing 4.4: Example showing how to use the rule from listing 4.3 in the GrShell

xgrs (proc)=Init
intValue = 7
xgrs (answer)=varExample(intValue, proc, "Remaining donuts")

4.2.3 Visited Flags

Visited flags are simple Boolean markers attached to each graph element. As the name
suggests they can be used to mark elements as visited while walking a graph, but they may
also be used to store any other Boolean values. For nested graph traversals even multiple
visited flags may be necessary at the same time. In the previous chapter the visited flags
were implemented using hash maps, but in GrGen.NET some visited flags could be hosted
directly inside the graph elements as there are still several free bits in a flag variable left.
By adding support for visited flags directly into GrGen.NET, no additional memory is
needed for up to eight simultaneously used visited flags.

54 CHAPTER 4. PROPOSED SOLUTIONS

While the visited flags can be made accessible to C# programs over the API without
problems, special syntax is needed to access them out of rules, because method calls are not
allowed there. Table 4.1 shows what you can do with visited flags and how you do it with
the API, the GrShell, and inside graph rewrite actions. To use a visited flag, first of all,
you have to allocate one from the graph. The resulting visitor ID can then be used to get
and set the according visited flag of given graph elements, to reset the visited flag for all
graph elements, and to deallocate the flag again. Graph rewrite actions can access a visited
flag with the new visited(elem, visitorID) expression. As an example, listing 4.5 searches
for Resource nodes which have not been visited by the visitor specified by visID, yet, and
which are pointed to by a given Process node. For a found match, the Amount attribute
of the resource is decremented and the resource is marked as visited by the given visitor.

Listing 4.5: Example of a GrGen.NET rule using a visited flag

rule visitedExample(var visID:int, p:Process)
{

p --> r:Resource;
i f { !visited(r, visID); }
modify {

eval {
r.Amount = r.Amount - 1;
visited(r, visID) = true;

}
}

}

You can have an arbitrary number of allocated visited flags at any time. Considering
a compiler scenario, you could have one walker visiting all program blocks and another
walker visiting any nodes – including program blocks – starting from the block currently
visited by the first walker without any interference.

The first eight visited flags are implemented by using unused flags in the graph elements.
So they do not need any additional memory and reading and writing the flags is a O(1)
operation. Resetting such flags is a O(|N |+ |E|) operation, |N | being the number of nodes
in the graph and |E| the number of edges, as the flags have to be reset in each graph
element. To avoid unnecessary resetting of elements, the graph remembers, whether any
nodes and any edges have been marked as visited. So, if you only mark nodes and then
reset the flags, only the nodes are actually reset.

When the user allocates more than eight visited flags at a time, hash maps are used for
the remaining flags which require O(|N |+ |E|) additional memory. Reading and writing
them has an expected time complexity of O(1). Resetting such flags also is a O(|N |+ |E|)
operation, as all buckets of the hash map are cleared by Dictionary<TKey,TValue>.Clear().

When a visited flag is deallocated, the flag is just added to a list of free flags. The flag
is not reset to avoid unnecessary runtime overhead. Only when this flag is allocated again,
a reset is forced. So visited flag allocation is a O(|N |+ |E|) operation, while deallocation is
a O(1) operation.

4.3. EMBEDDED GRGEN.NET: G# 55

Table 4.1: Visited Flag Tasks with API, GrShell, and Actions

Task With API
Flag allocation int visID = graph.AllocateVisitedFlag();
Get flag value bool val = graph.IsVisited(elem, visID);
Set flag value graph.SetVisited(elem, visID, true);
Reset flag values graph.ResetVisitedFlag(visID);
Flag deallocation graph.FreeVisitedFlag(visID);

Task With GrShell
Flag allocation visID = allocvisitflag
Get flag value val = isvisited elem visID
Display flag value isvisited elem visID
Set flag value setvisited elem visID true
Reset flag values resetvisitflag visID
Flag deallocation freevisitflag visID

Task Inside a graph rewrite action
Flag allocation –
Get flag value if { visited(elem, visID); }
Set flag value eval { visited(elem, visID) = true; }
Reset flag values –
Flag deallocation –

4.3 Embedded GrGen.NET: G#

The improvements on the API and the feature set of GrGen.NET are an important part
of the way to conciseness, type-safety, and convenience. But the convenience of locally
embedded graph patterns and rules, which can access all elements in the current scope
and create a new scope with the pattern elements, cannot be reached, yet. In this part
of the chapter I introduce the embedded domain-specific language G# to complete the
GrGen.NET improvements developed in this work.

G# extends the general-purpose programming language C# by constructs specific to
the domain of graph transformation. On the one hand, by extending C# we can use
the language the API was designed for and still have the full expressiveness of a general-
purpose language required for complex applications. On the other hand, the extensions
provide domain-specific notations for graph patterns and graph modifications improving
the conciseness and productivity for related tasks enormously. In the following subsections
these extensions are introduced.

56 CHAPTER 4. PROPOSED SOLUTIONS

4.3.1 Model Specification

For the declaration of a graph model in G#, the GrGen.NET model specification has
been adapted to C# and encapsulated in a model type, which now contains the node and
edge class declarations for this graph model. An instance of the model type represents
the graph and the model at the same time. In GrGen.NET 1.3.1 every graph had the
unspecific LGSPGraph type initialized with a graph model, whose type name was the
name of the model file without the extension suffixed by “GraphModel”. Now the developer
can just use the name he specified to access the graph/model type. Listing 4.6 illustrates
some more additions: To support object-oriented development, it is now possible to declare
methods and properties in element types (see line 13) and the graph type (line 27). For the
graph type also own fields are allowed (line 26), which may help easily accessing unique
graph elements.

Listing 4.6: An extended G# version of the model from section 3.1

1 public model AntWorld {
2 node class GridNode {
3 int food, pheromones;
4

5 GridNode(food, pheromones=0);
6 }
7 node class AntHill : GridNode {
8 food = 8;
9 }

10 node class Ant {
11 bool hasFood;
12

13 public bool TakeFood(GridNode foodPlace)
14 {
15 i f (foodPlace.food == 0) return false;
16 foodPlace.food--;
17 hasFood = true;
18 return true;
19 }
20 }
21 edge class GridEdge connect GridNode[*] --> GridNode[*];
22 edge class PathToHill : GridEdge connect inherited;
23 edge class AntPos connect Ant[1] --> GridNode[*];
24 edge class NextAnt connect Ant[0:1] --> Ant[0:1];
25

26 private int FoodCounter;
27 public void AssignFood(GridNode newGridNode)
28 {
29 i f (--FoodCounter != 0) return;
30 newGridNode.food += 100;
31 FoodCounter += 10;
32 }
33 }

4.3. EMBEDDED GRGEN.NET: G# 57

4.3.2 Rule Specification

Just like for the model types, new kinds of type declarations are introduced for rules, tests,
and subpatterns using the keywords rule, test , and pattern, respectively. To specify which
graph model should be used, the according type keyword is suffixed by the model name in
angle brackets as shown in listing 4.7. The rest (signature and declaration body) is identical
to the rest in GrGen.NET’s .grg files.

Listing 4.7: G# versions of rules from sections 3.5.3 and 3.5.4

public rule<AntWorld> BuildStNikHouse {
modify {

a:GridNode;
b:GridNode; c:GridNode;
d:GridNode(100); e:GridNode(100);

d -:GridEdge-> b -:GridEdge-> a -:GridEdge-> c -:GridEdge-> b
-:GridEdge-> e -:GridEdge-> d -:GridEdge-> c -:GridEdge-> e;

}
}

public rule<AntWorld> CreateLessAnts(hill:AntHill) : (Ant, Ant) {
modify {

a1:Ant -:AntPosition-> hill <-:AntPosition- a2:Ant;
a3:Ant -:AntPosition-> hill <-:AntPosition- a4:Ant;

a1 -:NextAnt-> a2 -:NextAnt-> a3 -:NextAnt-> a4;

return (a1, a4);
}

}

4.3.3 Domain-Specific Syntax in Methods

As shown in the previous chapter we want to do the following things directly inside a
method:

• Embed small to medium rules,

• iterate over one or more matches of a given pattern and execute some C# code for
each match, and

• do simple unconditional modifications to the graph.

Looking at how rules are executed, this is just iterating over matches for the according
patterns and do some modifications. So by splitting rules into an iteration and match
handling/modification part, we can handle all above cases easily. In the following we will
refer to the match handling/modification part as match handler.

58 CHAPTER 4. PROPOSED SOLUTIONS

The match and matchatonce Statements

The new statements match and matchatonce are responsible for the iteration part: The match

statement searches a given graph for a match of a given pattern, executes the match handler
for this match, and starts searching again up to a given number of times, which defaults
to 1. The matching fails, if no match was found. The matchatonce statement searches for
up to a given number of matches (which defaults to infinity) first, and then executes the
match handler for each one sequentially. It fails, if a given minimum number of matches
(which defaults to 1) was not found, in which case the match handler is not executed at all.
Whenever one of these statements fails, an optional else part is executed.

Listing 4.8 illustrates the use of both statements searching for an adjacent GridNode
with the highest pheromones attribute like in section 3.6. The do keyword in line 6 specifies,
that the match handler is a C# statement, in this case a block. Line 17 uses a replace block
of a graph rewrite rule instead. It is also possible to use a modify block here.

Of course, C#’s block oriented scoping rules also apply to the new statements: the
graph element variable g declared in line 4 is available in the match handler, just like the
variables maxPheromones and bestNode could be used in both patterns.

Listing 4.8: A G# version of the example from section 3.6

1 int maxPheromones = -1;
2 GridNode bestNode = null;
3 matchatonce(graph) {
4 ant -:AntPos-> :GridNode <-:GridEdge-> g:GridNode;
5

6 do {
7 i f (g.pheromones > maxPheromones) {
8 maxPheromones = g.pheromones;
9 bestNode = g;

10 }
11 }
12 }
13 i f (bestNode != null) {
14 match(graph) {
15 ant -:AntPos->;
16

17 replace {
18 ant -:AntPos-> bestNode;
19 }
20 }
21 }

The modify Statement

For unconditional modifications of the graph, using an empty pattern would be much
too verbose, so a modify statement modifying a given graph directly is what we need.
Unconditional modifications are often used to create elements, which are used later. To
make the new elements accessible, they have to be declared in a scope surrounding the

4.3. EMBEDDED GRGEN.NET: G# 59

modify statement and assigned to by this statement. As this was not intended by the
original GrGen rule syntax, the rule syntax is extended to allow setting an already existing
name for an unbound pattern element: When you would write name : Type to declare a
new pattern element with the name name and the type Type, you can now use an already
declared variable declared for this by writing declared := Type as shown in Listing 4.9.
This avoids any explicit assignments, which are needed by XL.

Listing 4.9: A G# version of the example from section 3.5.1

Ant ant;
modify(graph) {

ant:=Ant(true) -:AntPos-> hill;
}
DoSomething(ant);

4.3.4 Treating Rule Applications like Methods

For rule applications it is important to handle parameters and return values type-safely. In
XL this is fulfilled, but returning more than one element or value is problematic, as Java
does not support out or ref parameters like C# does. But out parameters are probably
also not suitable, as we do not want our variables to be changed, if no match was found.
However, ref parameters require our variables to be initialized, so the compiler cannot check,
whether each execution path to a usage of the variables contains sensible2 assignments to
them.

A syntax using tuples like in the XGRS would make the code type-safe and much cleaner
and would allow to only assign to the return variables, when the rule has actually matched.
To find out whether the rule has matched at all, the whole expression could evaluate to a
boolean value indicating this:

1 IGridNode destGridNode = someOldGridNode;
2 i f (!(destGridNode, IPathToHill nextWayHome) ?= graph.RuleA(ant, homeWay))
3 Console.WriteLine("RuleA has not been found");
4 else

5 {
6 bool succeeded = (IAnt ant) ?= graph.DoSomething(destGridNode, nextWayHome);
7 }

Let RuleA and DoSomething be names of actions declared for the graph model implied by
the type of graph. The above code shows the new “?=” tuple assignment operator for rule
applications, which has the precedence of a primary operator. A new token is required here
to make the language unambiguous, but as a side effect the question mark also suggests
that this assignment is conditional: The variable destGridNode in line 2 stays untouched,
if the rule does not succeed, so it is still the someOldGridNode in line 6. The new variable
nextWayHome of type IPathToHill declared in line 2 is only valid inside the if -expression
and the “then”- and “else”-part, but might only be initialized in one of the latter parts.

2Sensible, in contrast to an axiomatic initialization with null.

60 CHAPTER 4. PROPOSED SOLUTIONS

Here it is only initialized in the “else”-part because of the negation of the rule result. The
scoping rule is analogous to the scoping of variables declared in for statements.

So, the tuple assignment operator for rule applications can simplify single rule applica-
tions and the handling of especially multiple return values enormously.

4.3.5 Supporting XGRSs

As we have seen in section 3.4, XGRSs are very handy to execute a bunch of rules with
some sequence control. Partially XGRSs are already covered by the special rule invocation
syntax of the previous section. Together with support for expression statements3 as in XL,
the example from section 3.4 could be written as:

bool dummy;
for(int i = 0; i < 250; i++)
{

Ant curAnt = firstAnt;
do

{
graph.TakeFood(curAnt) | graph.GoHome(curAnt)

|| graph.DropFood(curAnt) | (graph.SearchAlongPheromones(curAnt)
|| graph.SearchAimless(curAnt));

}
while((curAnt) ?= graph.GetNextAnt(curAnt));
i f ((GridNode cur) ?= graph.ReachedEndOfWorld())
{

(cur, GridNode curOuter) ?= graph.GrowWorldFirstNotAtCorner(cur)
|| (cur, curOuter) ?= graph.GrowWorldFirstAtCorner(cur);
while((cur, curOuter) ?= graph.GrowWorldNextNotAtCorner(cur, curOuter)

|| (cur, curOuter) ?= graph.GrowWorldNextAtCorner(cur, curOuter)) {}
graph.GrowWorldEnd(cur, curOuter);

}
while((curAnt) ?= graph.Food2Ant(curAnt)) {}
graph.EvaporateWorld.ApplyAll(graph);

}

Partly this is even better than the XGRS, as the structure of the code is much clearer due
to the do-while loop and the if . Because of the special return syntax this also looks better
than the XL version. But the repeated mentioning of the graph variable is cumbersome
and the while loops with the empty body are not convincing either. With a special exec

statement like in the GrGen.NET rule specifications our example can be formulated this
way:

for(int i = 0; i < 250; i++)
{

Ant curAnt = firstAnt;
do

{

3Allowing a simple expression to be a statement like in C, e.g. true || false;.

4.3. EMBEDDED GRGEN.NET: G# 61

exec(graph, TakeFood(curAnt) | GoHome(curAnt) ||
DropFood(curAnt) | (SearchAlongPheromones(curAnt) ||

SearchAimless(curAnt)));
}
while((curAnt) ?= graph.GetNextAnt(curAnt));
i f ((GridNode cur) ?= graph.ReachedEndOfWorld())
{

exec(graph,
(

(cur, GridNode curOuter) ?= GrowWorldFirstNotAtCorner(cur) ||
(cur, curOuter) ?= GrowWorldFirstAtCorner(cur)

)
&&
(

(cur, curOuter) ?= GrowWorldNextNotAtCorner(cur, curOuter) ||
(cur, curOuter) ?= GrowWorldNextAtCorner(cur, curOuter)

)*
&& GrowWorldEnd(cur, curOuter)

);
}
exec(graph, (curAnt) = Food2Ant(curAnt)* | [EvaporateWorld]);

}

With the exec statement all features of XGRSs like iteration and nested transactions are
available, and you do not have to repeat the graph qualification everywhere anymore. But
for consistency the tuple assignments also use “?=” as operator instead of the original “=”.

4.3.6 Special Syntax for Depth-First Search

With the domain-specific syntax introduced in section 4.3.3 the expressiveness has already
been considerably improved. So the question is, whether more special syntax is needed to
improve DFS traversal of graphs. To answer this question, let us first have a look at a G#
version of the CheckReachable method from section 3.7 using the embedded rules:

bool CheckReachable(INode from, INode to)
{

bool found = false;
DFS.DoDFS(from,

/* Prewalk */ delegate(INode curNode)
{

i f (curNode == to)
{

found = true;
return WalkerResult.Abort;

}

i f (curNode != from)
{

match(graph)
{

62 CHAPTER 4. PROPOSED SOLUTIONS

curNode <-AntPos-;
do {

return WalkerResult.Skip;
}

}
}

return WalkerResult.Proceed;
},
/* AddChildren */ delegate(INode curNode, Stack<INode> nodeStack)
{

matchatonce(graph)
{

curNode <-GridEdge-> n:Node;
do {

nodeStack.Push(n);
}

}
}

);
return found;

}

This is already much clearer than before, but special syntax can improve this even further:

1 bool CheckReachable(INode from, INode to)
2 {
3 fordepth(INode curNode in graph at from)
4 {
5 along {
6 curNode <-GridEdge-> nextnode:Node;
7 }
8 pre do {
9 i f (curNode == to) return true;

10

11 i f (curNode != from)
12 {
13 bool hasAnt = false;
14 match(graph, 1)
15 {
16 curNode <-AntPos-;
17 do {
18 hasAnt = true;
19 }
20 }
21 i f (hasAnt) continue;
22 }
23 }
24 }
25 return false;
26 }

4.4. CONCLUSION 63

The new fordepth statement declares a DFS through the graph given after in starting at
the node stated after at (see line 3). The along-pattern specifies the children of the current
node (here curNode) by declaring a special node named nextnode (line 6). Instead of the
along-pattern, the user can also specify a child -pattern together with a next-pattern. The
former pattern chooses the first child and the latter pattern all following children of the
current node. Both ways result in a very compact and customizable specification of the
DFS-tree. Apart from the pre-handler, it is also possible to specify a post-part, and both
pre- and post-parts can use a modify-part or an action call instead of a do-part. The pre- and
post-handlers will only be executed for those nodes which are compatible to the type given
in the fordepth statement (line 3). Of course the incompatible nodes will still be handled by
the DFS normally. They will just not be passed to those handlers.

Compared to the XL version this is quite good. Only the hasAnt variable is a bit
cumbersome. Here XL’s use of the aggregate function empty with a query is much more
concise. The hasAnt variable is required, because a continue inside the match statement
would just skip any further processing of the match due to scoping.

Sometimes choosing the children is more complicated4. Therefore it is also possible
to specify an action call for along or child/next or a do-part acting like the body of an
enumerator yielding child nodes:

along do {
foreach(IEdge inEdge in curNode.GetCompatibleIncoming(GridEdge.TypeInstance))

yield return inEdge.Source;
foreach(IEdge outEdge in curNode.GetCompatibleOutgoing(GridEdge.TypeInstance))

yield return outEdge.Target;
}

4.4 Conclusion

In this chapter several improvements of GrGen.NET and the embedded domain-specific
language G# have been introduced. Together with improvements implemented by Edgar
Jakumeit [Jak07, Jak08] and Sebastian Buchwald [Buc08] the convenience and type safety of
GrGen.NET evolved very positively as shown in the “New” column of table 4.2 extending
table 3.1 from the previous chapter. The column “with G#” shows that G# in combination
with the proposed changes to GrGen.NET solves the remaining issues. In the following
subsections the descriptions of the criteria are repeated and their ratings are described for
the new columns.

4Not here, the example below is equivalent to the much conciser along-part above.

64 CHAPTER 4. PROPOSED SOLUTIONS

4.4.1 Model

Graph: The expressiveness of graphs.

New: Convenience: Typed, attributed nodes (+). Typed, attributed, and direct-
ed/undirected [Buc08] multiedges (+ +).

Type safety: Present (+).

With G#: Unchanged.

Multiple graph models: Can multiple graph models be handled?

New: Convenience: For each graph model a special graph class is generated
providing special convenience methods for creating graph elements (+).

Type safety : Present, because of special graph classes (+).

With G#: Unchanged.

Graph structure assertions: Assertions on the structure of a graph.

New and with G#: Unchanged.

Node types: Properties of node types.

New: Convenience: Native attributed node types (+) with multiple inheritance
(+).

Type safety : Present due to custom classes per type (+).

With G#: Unchanged.

Edge types: Properties of edge types.

New: Convenience: Native attributed edge types (+) with multiple inheritance (+).
Support for undirected edge types and (abstract) arbitrarily directed edge types
as a common super type of directed and undirected edge types [Buc08] (+).

Type safety : Present due to custom classes per type (+).

With G#: Unchanged.

Attribute access: How can attributes be accessed in rules and via the API?

New: Convenience: Intuitive attribute access with the “.” operator in rule specifi-
cation and via API (+ +)

Type safety : The attribute properties are correctly typed (+).

With G#: Unchanged.

Constructors: Constructors of graph element types.

New: Convenience: Constructors supported for node and edge types (+). Default
parameters, which can be used by position and by name (+).

Type safety : Present (+).

With G#: Unchanged.

4.4. CONCLUSION 65

XL GrGen.NET
1.3.1 New with G#

Con TS Con TS Con TS Con TS

Model:
Graph o + + + ++ + ++ +
Multiple graph models (s/A) o + ×××/o ×××/- ×××/+ ×××/+ + +
Graph structure assertions ××× ××× + + + + + +
Node types (spec/API) o + + +/- + + + +
Edge types (spec/API) - - - + +/- + + + +
Attribute access (spec/API) ++ + ++/- - +/- ++ + ++ +
Constructors (node/edge) +/××× +/××× ××× ××× + + + +
Element methods (node/edge) +/××× +/××× ××× ××× ××× ××× + +
Embedding + + ××× ××× ××× ××× + +
Rules:
Modes + + o + + + + +
LHS and RHS o + o + + + + +
Parameters (spec/API) ++ + o +/- + +/- ++ +
Returns (spec/API) - + o/- +/- + +/- ++ +
Outer access to LHS ++ + - - - - ++ +
Outer access to RHS o + ××× ××× ××× ××× + +
Embedding + + ××× ××× ××× ××× + +
Rule execution:
Graph queries + + ××× ××× ××× ××× ××× ×××
XGRS ××× ××× - - - - + +
Boolean combination - + ××× ××× - - + +
- without returns + + - - - - + +
Graph traversal:
Visited flags + - ××× ××× + - + -
DFS - - - ××× ××× ××× ××× + +
Other traversals ××× ××× ××× ××× ××× ××× ××× ×××

Table 4.2: Comparison of different features of XL, GrGen.NET 1.3.1, GrGen.NET
including the proposed changes, and GrGen.NET with G# in terms of convenience (Con)
and type safety (TS) (s/A = spec/API)

66 CHAPTER 4. PROPOSED SOLUTIONS

Element methods: Is it possible to declare methods in element types?

New: Not supported (×××).

With G#: Convenience: Node and edge types support element methods (+).

Type safety : Present (+).

Embedding: Is it possible to declare graph types in the “normal” source code?

New: Not supported (×××).

With G#: Convenience: Yes, explicitly in G# files (+).

Type safety : Present (+).

4.4.2 Rules

Modes: Available rule modes.

New: Convenience: Test/rule and modify/replace (o). Rule modifiers dpo, induced,
and exact to avoid many negative application conditions [Buc08](+).

Type safety : Present (+).

With G#: Unchanged.

LHS and RHS: The left and right hand side of graph rewrite rules.

New: Convenience: Straightforward syntax (+). Subpatterns and alternative
patterns enabling recursive patterns [Jak08] (+). Constructors can be used for
both matching and instantiating (+).

Type safety : Present (+).

With G#: Unchanged.

Parameters: Parameters of rules “called” in some way. For XL this means, that the rule
is wrapped by a method.

New: Convenience: Graph elements as well as all attribute types supported by
GrGen.NET can be passed to a rule (+).

Type safety : Although the rule specification handles parameters type-safely (+),
the API receives the parameters in a general object array (-).

With G#: Convenience: Unchanged.

Type safety : The rule specification, the method-like rule calls, and the exec
statement handle parameters type-safely (+).

Returns: Return values of rules “called” in some way like above.

New: Convenience: Graph elements as well as all attribute types supported by
GrGen.NET can be returned by a rule (+). Return values must be extracted
from an array (-).

Type safety : Although the rule specification handles parameters type-safely (+),
the API uses a general object array for the return values (-).

4.4. CONCLUSION 67

With G#: Convenience: Graph elements as well as all attribute types supported
by GrGen.NET can be returned by a rule (+). Convenient assignment to
variables with tuple notation (+).

Type safety : The rule specification, the method-like rule calls, and the exec
statement handle return values type-safely (+).

Outer access to LHS: How can matched graph elements of the LHS of a rule be accessed
by imperative code executed before or instead of a RHS without “returning” the
elements explicitly?

New: Unchanged.

With G#: Convenience: Inside a do-part the LHS elements can just be accessed
via their names (+ +). There is no simpler way than that.

Type safety : The names refer to elements with the correct type (+).

Outer access to RHS: How can elements of the RHS of a rule be accessed by imperative
code executed after the rule without “returning” the elements explicitly? A typical
example would be the creation of a graph element from an embedded rule and its use
outside of the rule.

New: Not supported (×××).

With G#: Convenience: Elements can be directly assigned to variables or fields of
the outer scope with “:=” (+).

Type safety : Present (+).

Embedding: Is it possible to embed graph rewrite rules in the “normal” source code?

New: Not supported (×××).

With G#: Convenience: Yes, with several new statements (+).

Type safety : Present (+).

4.4.3 Rule Execution

Graph queries: Are graph queries supported?

New: Not supported (×××).

With G#: Not supported (×××).

XGRS: Support for extended graph rewrite sequences.

New: Convenience: Supported by API (+). Parameters and return values have to
be accessed via graph variables (-). Verbatim strings supported to reduce noise
in source code (o).

Type safety : String is interpreted at run-time, so besides wrong names even
syntactic errors are possible (-)

68 CHAPTER 4. PROPOSED SOLUTIONS

With G#: Convenience: exec statement provides direct XGRS support (+).

Type safety : XGRS compilation, thus full checking supported (+).

Boolean combination: Is it possible to combine several “rule applications”5 directly
with Boolean operators like in XGRSs?

New: Convenience: Dummy variables necessary because C# has no expression
statements (-).

Type safety : General object array for parameters and return values (-).

With G#: Convenience: Support for expression statements (+). Simple XGRS-like
Boolean combination even with return values due to tuple assignments (+).

Type safety : Present (+).

Boolean combination without returns: This criterion is similar to “Boolean combi-
nation” but here only “rule applications” not returning any values (except success
and failure) are considered.

New: Unchanged.

With G#: Convenience: Support for expression statements (+).

Type safety : Present (+).

4.4.4 Graph Traversal

Visited flags: The existance of visited flags.

New: Convenience: Support for visited flags in rules and via API (+).

Type safety : Any integer could be used as a handle for a so called “visitor ID”,
but an invalid handle is recognized in most situations (-).

With G#: Unchanged.

DFS: Support for traversing a graph in depth-first order.

New: Not supported (×××).

With G#: Convenience: Special syntax for DFS provided (+).

Type safety : Present (+).

Other traversals: Support for any other graph traversals, like breadth-first-search or
some weighted searchs.

New: Not supported (×××).

With G#: Not supported (×××).

5Method calls for XL.

Chapter 5

Implementation

This chapter contains a description of how the Mono C# compiler works and how it
can be extended to support the language introduced in chapter 4 and specified in more
detail in appendix A. Due to lack of time only a part of the extensions have actually been
implemented during this work, namely: model, rule, test , and pattern declarations and match,
matchatonce, matchactionatonce, modify, and replace statements. Constructors and element
methods belonging to the model part, and element retyping, alternative patterns, and use
of subpatterns belonging to the graph rewrite parts have not been implemented, yet. In
appendix B some examples working with the current implementation are shown.

5.1 The Mono C# Compiler

The job of a C# compiler is to translate any number of C# files into Common Intermediate
Language (CIL, a stack-based object-oriented assembly language for a virtual machine) code
stored in a .NET assembly. When the assembly is later executed, the Common Language
Runtime (CLR) just-in-time compiles the CIL code into machine code executable by the
CPU. As the translation of the C# code is only partial, the compiler only has to check
the code for syntactic and semantic errors, correctly resolve all names to their definitions,
perform some basic simplifications mandated by the language standard, and emit the CIL
code. The Mono C# compiler does this in several phases:

1. Parsing: All source files are parsed and an intermediate representation (IR) is built.
While the lexer is handwritten, the parser is generated by the LALR(1) parser
generator jay [Sch08], yacc retargeted to C# and Java. The AST is manually built
in the grammar production handlers.

2. Loading Referenced Assemblies: All referenced assemblies are loaded via reflection
to make their types available for the next phases.

3. Type Hierarchy: The type hierarchy is created into a new assembly, first recursively
resolving the interfaces and then classes and structs, but all types are kept empty, as
they may reference types which have not been created, yet.

69

70 CHAPTER 5. IMPLEMENTATION

4. Member Definition: All types are filled with their fields and empty definitions for
methods, properties, indexers, and events.

5. Code Generation: All types are emitted into the assembly. Whenever a method is
about to be emitted, it is first resolved, i.e. all used names are resolved to their
definitions, the types of all expressions are calculated, constant expressions are
simplified, and semantic analysis takes place. Then the code generation emits the
method and continues with the current type.

6. Output: The assembly is written to a file.

The phases starting from phase 2 make heavy use of the reflection features provided by
the System.Reflection.Emit namespace of the Framework Class Library. This is probably a
reason why the Mono C# compiler is quite slow. For example Assembly.Load does not only
load the meta information of an assembly into memory, which would be all the compiler
needs to know about, but also the CIL code of all method implementations.

5.2 Extending the Mono C# Compiler

The G# language adds several constructs to the C# language, which must be properly
handled by a compiler: four new kinds of types (model, rule, test , and pattern declarations),
several new statements (match, matchatonce, matchaction, matchactionatonce, modify, replace,
and fordepth), and two new expressions (exec and tuple-calls). Additionally special semantics
is given to a foreach loop iterating over a graph type. Due to these extensions some additional
steps must be taken in order to compile G# files: After parsing all source files, the parsed
graph models must be processed, because their types are needed for both the normal C#
code, which may try to reference them, and the embedded graph patterns, which definitely
do. But for the latter the way the Mono C# Compiler processes the source files causes
a problem: an embedded graph pattern may reference entities from the C# context. To
generate an action from this pattern via the GrGen.NET frontend, the types of these
entities must be known, but they are not calculated until the containing method becomes
resolved during the Code Generation phase. But in the Code Generation phase it is too
late to generate and add the classes, especially as it would be very inefficient to call the
GrGen.NET frontend once for every single action. The way way I have chosen to solve
this problem is to resolve methods containing embedded graph patterns and to generate
and add the classes for the according actions before the Code Generation phase. So the
(partially1) extended compiler uses the following new sequence of phases:

1. Parsing: All source files are parsed and the AST is built.

2. Model Generation: The graph models are generated using the GrGen.NET frontend,
which produces new C# files, for which phase 1 has to be repeated.

1More phases might be necessary, when the other constructs are implemented, too.

5.2. EXTENDING THE MONO C# COMPILER 71

3. Loading Referenced Assemblies: All referenced assemblies are loaded.

4. Type Hierarchy: A type hierarchy of empty types is created into a new assembly.

5. Member Definition: All types are filled with their fields and empty definitions for
methods, properties, indexers, and events.

6. Action Generation: All graph rewrite actions are generated using the GrGen.NET
frontend which again produces new C# files, for which phases 1, 4, and 5 have to be
repeated.

7. Code Generation: All types are emitted into the assembly.

8. Output: The assembly is written to a file.

This order has a performance problem: The rather slow GrGen.NET frontend has to be
called two times, because the graph model used by an embedded graph pattern must be
known prior to its generation. In contrast to the explicit action declarations, the embedded
patterns get information about the model to be used only implicitly through the type of
the passed graph. But to be able to resolve this type, the type must already exist. Perhaps
it may be possible to use pseudo-types for the graph models and replace them later by the
types of the generated models. This way the GrGen.NET frontend could be called just
one time. Although it is unclear, if this really works, it is definitely worth investigating.

Apart from the new phases, both the lexer and the parser must be extended as described
in the following subsections.

5.2.1 Lexer

The lexer is responsible for transforming the character stream of the source code into a
token stream, which can then be further processed by the parser. A token represents one or
more characters, for example an identifier, a keyword, an operator, or a punctuation mark.

For G# we have to add several keywords for the new kinds of types and for the new
statements, and some tokens for pattern edge declarations. Some keywords solely used
inside action definitions like “delete” or “eval” are only used as keywords, when the lexer is
in an action context. There, also three new tokens are valid, needed for edge parsing to
disallow spaces in arrowheads: “?-”, “-?”, and “<-”. For some constructs, it is not necessary
to actually parse their contents, because it will just be written to a file and given to the
GrGen.NET frontend. Therefore the new method Tokenizer.read_block_body reads the
whole content of a block2 into a string.

2i.e. without the braces

72 CHAPTER 5. IMPLEMENTATION

5.2.2 Parser

The parser reads the tokens provided by the lexer and tries to find out which productions
of the grammar of the according language were used to generate the source code. “Tries”,
because the source code may contain syntax errors, in which case there is no valid derivation.

As mentioned above, the Mono C# Compiler uses an LALR(1) parser, i.e. a shift-reduce
parser with one token lookahead. A shift-reduce parser either pushes input tokens onto
a stack (“shifts” them) or replaces elements at the top of the stack by other elements
(“reduces” them). Whether the parser shifts or reduces depends on the current state of the
parser and the lookahead of one token. The decision must always be unambiguous except
for some shift/reduce conflicts which cannot be avoided3. Therefore the grammar has to be
formulated accordingly to make it possible to generate a parser for it.

The used yacc grammar allows to specify user-defined code to be executed whenever a
production or a part of it has been determined. In the user-defined code the Mono C#
compiler builds up its intermediate representation. G# extends the C# grammar by quite
a number of new productions. First it adds the four new kinds of type declarations, model,
rule, test , and pattern. Here the content of the declarations is just read into a string using
Tokenizer.read_block_body explained in the previous subsection, as we use the GrGen.NET
frontend to build C# code for models and rules. So when we parse a model, we need to
store the model name and its content, and when we parse an action, we need to store the
action name, the used model, the parameter and return types, and its content.

The new statements need much more work than these declarations, as illustrated using
the match statement: The match statement consists of a reference to a graph, an optional
number of times to execute, an optional action modifier (dpo and such), the pattern to be
searched for, a modify or replace or do4 part, and an optional else part with an embedded
statement. For this the pseudo code shown in listing 5.1 is built up in the AST, replacing
the meta variables in angle brackets and the meta statements in double angle brackets
accordingly. Line 1 requests a current version of the action associated to the given pattern.
This way dynamically generated search plans can still be used, although there is no user-
defined name for this action. Because the static version of the action for this pattern will
not exist until before code generation, a pseudo expression is used for action.Instance which
is not resolved before the code for the type is actually emitted, but in the meantime serves
as an IAction object to allow normal type analysis. The parameters pseudo-array in line 4
refers to the C# variables used inside the pattern, so here variables from the C# context
are passed to the graph rewriting context over the curparams array. The assignments are
done in every iteration here, because the parameters could be changed by the do part. In
line 9 graph elements from the graph rewriting context are passed to the C# context by
creating local variables with the according names and initializations. The else part is only
executed, when no match has been found in the first iteration of the for loop (see line 16).
The other (currently implemented) statements work very similar.

3Like the famous if-if-else case.
4Containing an embedded statement to be executed for each found match

5.2. EXTENDING THE MONO C# COMPILER 73

Listing 5.1: Pseudo code representation of code generated for a match statement

1 IAction <curaction> = <graph>.GetNewestActionVersion(<action.Instance>);
2 object[] <curparams> = new object[<numparams>];
3 for(int <forvar> = 0; <forvar> < <maxnumiter>; ++<forvar>) {
4 <<FOREACH i>>: <curparams>[<i>] = <parameters[i]>;
5 IMatches <curmatches> = <curaction>.Match(<graph>, 1, <curparams>);
6 i f (<curmatches>.Count != 0) {
7 IMatch <curmatch> = <curmatches>.GetMatch(0);
8 <<IF USED WITH DO>>
9 <<LOCAL VARS WITH GRAPH ELEMENTS FROM PATTERN>>

10 <<STATEMENT FROM DO>>
11 <<ELSE>>
12 <curaction>.Modify(<graph>, <curmatch>);
13 <<ENDIF>>
14 } else {
15 <<IF ELSE PART SPECIFIED>>
16 i f (<forvar> == 0) {
17 <else part>
18 }
19 <<ENDIF>>
20 break;
21 }
22 }

74 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results and Evaluation

To evaluate this diploma thesis, we consider three aspects in this chapter: the practical
advantage of using G# on the basis of two examples, the many improvements presented
in the previous chapters, and performance measurements of the different GrGen.NET
versions.

6.1 Benefit of Using G#

In this section the practical advantage of using G# is shown by comparing the implemen-
tation of some parts of the libFirm[Lin02] compiler library written in C with analogue
implementations written in G#. We will see that the new language constructs can simplify
the implementation of graph based applications in several places and make them much
easier to understand.

6.1.1 Short Introduction to libFirm

libFirm is a library for compilers offering a graph-based intermediate representation (IR)
of programs, thoroughly following the static single assignment (SSA) approach from high-
level IR down to code generation. It provides several analyses, many optimizations and a
functioning IA-32 backend. The compiler developer builds up the IR graph using the API of
libFirm as part of the language-specific frontend. The elements of the IR graph describe the
control flow and the data dependency of the program as well as the operations themselves.
For example the integer addition of two integer values (not necessarily constants) represented
by the IR nodes a and b is an Add node with an ordered set of operands a and b modelled
as reversed data flow (df) edges1. The outgoing edges are accessible via indices through
get irn n and the incoming edges through get irn n out2. libFirm provides numerous
convenience functions for all kinds of nodes to give the get irn n calls with specific indices
some semantics. So e.g. get binop left(n) yields the left operand of a binary operation n.

1In fact, they represent the data dependencies of the operations.
2That’s not a typo, the function name is highly irritating.

75

76 CHAPTER 6. RESULTS AND EVALUATION

6.1.2 Example: The Weight of a Method Parameter

As a first example we take a look at a function, which calculates the impact of a constant
used as a given method parameter for inlining. If the “weight” of the parameter is high,
i.e. large parts of the method could be simplified if this parameter was a constant, it may
be beneficial to inline this method or at least create a specialized copy of it. The function
assumes that the given IR node is constant, and checks for each usage of this node, whether
the usage is then also constant in which case the function is called recursively for the
according usages.

The following listing shows an excerpt of this function from analyze irg args.c leaving
out some switch cases which could not be simplified and combining two related if statements
into one for fairer comparison:

Listing 6.1: The C-version of the calc method param weight function from libFirm

1 static unsigned calc_method_param_weight(ir_node *arg) {
2 int i, j, k;
3 ir_node *succ, *op;
4 unsigned weight = null_weight;
5

6 /* We mark the nodes to avoid endless recursion */

7 set_irn_link(arg, VISITED);
8

9 for (i = get_irn_n_outs(arg) - 1; i >= 0; i--) {
10 succ = get_irn_out(arg, i);
11

12 /* We were here.*/

13 i f (get_irn_link(succ) == VISITED)
14 continue;
15

16 /* We should not walk over the memory edge.*/

17 i f (get_irn_mode(succ) == mode_M)
18 continue;
19

20 switch (get_irn_opcode(succ)) {
21 case ...: /* some uninteresting cases left out... */

22

23 case iro_Tuple:
24 /* unoptimized tuple */

25 for (j = get_Tuple_n_preds(succ) - 1; j >= 0; --j) {
26 ir_node *pred = get_Tuple_pred(succ, j);
27 i f (pred == arg) {
28 /* look for Proj(j) */

29 for (k = get_irn_n_outs(succ) - 1; k >= 0; --k) {
30 ir_node *succ_succ = get_irn_out(succ, k);
31 i f (is_Proj(succ_succ) && get_Proj_proj(succ_succ) == j) {
32 /* found */

33 weight += calc_method_param_weight(succ_succ);
34 }
35 }
36 }

6.1. BENEFIT OF USING G# 77

37 }
38 break;
39

40 default: ... // left out

41 }
42 }
43 set_irn_link(arg, NULL);
44 return weight;
45 }

Lines 9–18 iterate to the next usage of arg, which has not been visited in the current
recursion path, yet, and which is not reached by a memory edge. The tuples analysed in
lines 25–37 always have as many operands as they have Proj nodes, each projecting out
one of the tuple operands. Here the code searches for all Proj nodes corresponding to arg
as tuple operand and calls calc method param weight recursively on these Proj nodes.

An implementation in G# formulates the first part clearer and the second part much
clearer with the help of graph patterns:

Listing 6.2: The G#version of the calc method param weight function from libFirm

1 uint CalcMethodParamWeight(IR_node arg, int visID)
2 {
3 uint weight = (uint) ArgsWeight.Null;
4

5 // We mark the nodes to avoid endless recursion

6 graph.SetVisited(arg, visID, true);
7

8 // Iterate over all unvisited users of arg => succ

9 matchatonce(graph)
10 {
11 arg <-:df\mem- succ:IR_node;
12 i f { !visited(succ, visID); }
13

14 do {
15 switch((NodeTypes) succ.Type.TypeID)
16 {
17 case ...: // some uninteresting cases left out ...

18

19 case NodeTypes.Tuple:
20 /* unoptimized tuple */

21 matchatonce(graph, *)
22 {
23 succ_succ:Proj -:df-> succ -dfarg:df-> arg;
24 i f { succ_succ.proj == dfarg.pos; }
25

26 do {
27 weight += CalcMethodParamWeight(succ_succ, visID);
28 }
29 }
30 break;
31

78 CHAPTER 6. RESULTS AND EVALUATION

32 default: ... //left out

33 }
34 }
35 }
36 graph.SetVisited(arg, visID, false);
37 return weight;
38 }

The iteration over the usages is done by lines 9–14 clearly not allowing traversing memory
edges (“<-:df\mem-”) and requiring an element which has not been visited, yet. Searching
for the corresponding Proj node results in the very simple pattern matching in lines 21–26.

6.1.3 Example: Finding a Rotl Pattern

The “iropt.c” source file of libFirm contains over 6.000 lines of transformations simplifying
and normalizing the intermediate representation of a program. For example it transforms
−(a − b) to b − a, a & (aˆ b) to a & b̃, and (X − a) == (X − b) to a == b. Writing
those transformations is very tedious and repetitive: many conditions have to be met for
the transformation to be applicable, leading to many if statements followed by a return
statement. Many operations are commutative and/or associative requiring more very similar
alternative conditions. Working with constants always requires several function calls. All
these points make the transformations hard to read and understand, as the following listing
of a transformation shows, which searches for some patterns of the Rotl (Rotate left)
instruction starting with a given Or node:

Listing 6.3: The C-version of the transform node Or Rotl function from libFirm

1 /**

2 * Optimize an Or(shl(x, c), shr(x, bits - c)) into a Rotl

3 */

4 static ir_node *transform_node_Or_Rotl(ir_node *or) {
5 ir_mode *mode = get_irn_mode(or);
6 ir_node *shl, *shr, *block;
7 ir_node *irn, *x, *c1, *c2, *v, *sub, *n, *rotval;
8 tarval *tv1, *tv2;
9

10 i f (! mode_is_int(mode))
11 return or;
12

13 shl = get_binop_left(or);
14 shr = get_binop_right(or);
15

16 i f (is_Shr(shl)) {
17 i f (!is_Shl(shr))
18 return or;
19

20 irn = shl;
21 shl = shr;
22 shr = irn;

6.1. BENEFIT OF USING G# 79

23 } else i f (!is_Shl(shl)) {
24 return or;
25 } else i f (!is_Shr(shr)) {
26 return or;
27 }
28 x = get_Shl_left(shl);
29 i f (x != get_Shr_left(shr))
30 return or;
31

32 c1 = get_Shl_right(shl);
33 c2 = get_Shr_right(shr);
34 i f (is_Const(c1) && is_Const(c2)) {
35 tv1 = get_Const_tarval(c1);
36 i f (! tarval_is_long(tv1))
37 return or;
38

39 tv2 = get_Const_tarval(c2);
40 i f (! tarval_is_long(tv2))
41 return or;
42

43 i f (get_tarval_long(tv1) + get_tarval_long(tv2)
44 != (int) get_mode_size_bits(mode))
45 return or;
46

47 /* yet, condition met */

48 block = get_nodes_block(or);
49

50 n = new_r_Rotl(current_ir_graph, block, x, c1, mode);
51

52 DBG_OPT_ALGSIM1(or, shl, shr, n, FS_OPT_OR_SHFT_TO_ROTL);
53 return n;
54 }
55

56 i f (is_Sub(c1)) {
57 v = c2;
58 sub = c1;
59 rotval = sub; /* a Rot right is not supported, so use a rot left */

60 } else i f (is_Sub(c2)) {
61 v = c1;
62 sub = c2;
63 rotval = v;
64 } else return or;
65

66 i f (get_Sub_right(sub) != v)
67 return or;
68

69 c1 = get_Sub_left(sub);
70 i f (!is_Const(c1))
71 return or;
72

73 tv1 = get_Const_tarval(c1);

80 CHAPTER 6. RESULTS AND EVALUATION

74 i f (! tarval_is_long(tv1))
75 return or;
76

77 i f (get_tarval_long(tv1) != (int) get_mode_size_bits(mode))
78 return or;
79

80 /* yet, condition met */

81 block = get_nodes_block(or);
82

83 n = new_r_Rotl(current_ir_graph, block, x, rotval, mode);
84

85 DBG_OPT_ALGSIM0(or, n, FS_OPT_OR_SHFT_TO_ROTL);
86 return n;
87 } /* transform_node_Or_Rotl */

As the Or operation is commutative, lines 13–27 are required to get its Shl and Shr
operands. Lines 28–30 make sure both shift operations use the same left operand. Lines 35–
45 check whether the constant right operands of the shift operations add up to the size
of the according mode (e.g. 32 bits for an int32 t). Lines 56–64 determine which shift
operation has a Sub as an operand.

Using the graph patterns of G# and a more convenient representation of constants3 the
above example can be written in a very clear and concise way:

Listing 6.4: The G#-version of the transform node Or Rotl function from libFirm

1 pattern PatRotSub(sub:Sub, var bits:int, v:IR_node)
2 {
3 sub -:df_left-> c:ConstLong;
4 sub -:df_right-> v;
5 i f { c.Value == bits; }
6 }
7

8 /// <summary>

9 /// Optimize an Or(shl(x, c), shr(x, bits - c)) into a Rotl

10 /// </summary>

11 public IIR_node TransformNodeOrRot(IIR_node or)
12 {
13 IMode mode = or.GetMode(irg);
14 i f (!mode.IsInt) return or;
15

16 match(graph)
17 {
18 or -:df_operand-> shl:Shl -:df_left-> x:IR_node;
19 or -:df_operand-> shr:Shr -:df_left-> x;
20

21 alternative {
22 const_const {
23 hom(c1, c2);

3As libFirm is written in C it has no access to object-oriented features and cannot use operator
overloading.

6.1. BENEFIT OF USING G# 81

24 shl -:df_right-> c1:ConstLong;
25 shr -:df_right-> c2:ConstLong;
26 i f { c1.Value + c2.Value == mode.SizeBits; }
27

28 do {
29 return irg.NewRotl(or.GetBlock(irg), x, c1, mode);
30 }
31 }
32 sub_value {
33 shl -:df_right-> sub:Sub;
34 shr -:df_right-> v:IR_node;
35 :PatRotSub(sub, mode.SizeBits, v);
36

37 do {
38 // A Rot right is not supported, so use a rot left with sub = bits - v

39 return irg.NewRotl(or.GetBlock(irg), x, sub, mode);
40 }
41 }
42 value_sub {
43 shl -:df_right-> v:IR_node;
44 shr -:df_right-> sub:Sub;
45 :PatRotSub(sub, mode.SizeBits, v);
46

47 do {
48 // A Rot left

49 return irg.NewRotl(or.GetBlock(irg), x, v, mode);
50 }
51 }
52 }
53 }
54 return or;
55 }

By using the general df operand edges, both operand orders and the left operand of the
shifts are checked in just two lines (lines 18–19) instead of sixteen lines (lines 13–30 of
listing 6.3 ignoring empty lines). The ConstLong nodes make it much easier to ensure, that
the constant right operands of the shift operations add up to the correct number of bits
(line 26). The three cases of this pattern can be clearly recognized in the named alternative

cases. With the help of the PatRotSub pattern the difference between the alternatives
sub value and value sub is clear at first sight. If the conditions specified by the patterns
are not met, the program will just find no match and return to the caller in line 54. That
means two returns for the negative case instead of thirteen in the libFirm version.

6.1.4 Evaluation

To compare the productivity of G# and C, table 6.1 not only shows the number of lines used
by the implementations of both examples, but also the number of tokens. Although “number
of lines” is easier to understand, it depends very much on coding style and does not account

82 CHAPTER 6. RESULTS AND EVALUATION

for the length of a line. The “number of tokens”, on the other hand, ignores comments,
whitespaces, newlines, and the length of words. It is only vulnerable to unnecessary braces
due to coding style. Therefore, it is a good means of measuring the structural verbosity of
the implementations.

So, looking at table 6.1 we see, that the G# notation is much more concise. The G#
version of the “Rotl” example requires 34% less tokens than the C version and is easier to
understand.

Example C Implementation G# Implementation C → G#
Lines Tokens Lines Tokens Lines Tokens

Param Weight 45 210 38 149 -16% -29%
Rotl 87 438 55 287 -37% -34%

Table 6.1: Comparison of two examples between C and G# implementations

6.2 Usability Improvements

The usability of a programming system heavily depends on two factors: The convenience of
solving even complex problems and type safety. A very expressive and convenient system is
of no use, if the time saved during the first development stage has to be spent with tedious
debugging of hidden type errors; especially, if the type errors induce very subtle problems.

As shown in table 6.2 (copied from the previous chapter), the convenience and type safety
of GrGen.NET without G# has already been significantly improved in the categories
“Model” and “Rules”. Especially the assimilation of the attributes into the element types
was a big step forward. But with G# there is little left to be desired as rules can be
handled much easier and safer with embedded rules, method-like rule calls, and XGRSs.
Also depth-first-order graph traversals can now be specified easily and concisely. Only the
handles of visited flags are still not type-safe, because simple integers are used instead of
heavy-weight yet type-safe objects.

Comparing XL with GrGen.NET/G# we see, that GrGen.NET can now very well
compete with XL in expressiveness and convenience and is even superior in the categories
“Model” and “Rules”. Especially the fully featured graph models and the tuple notation for
multiple return values are important advantages over XL.

6.2. USABILITY IMPROVEMENTS 83

XL GrGen.NET
1.3.1 New with G#

Con TS Con TS Con TS Con TS

Model:
Graph o + + + ++ + ++ +
Multiple graph models (s/A) o + ×××/o ×××/- ×××/+ ×××/+ + +
Graph structure assertions ××× ××× + + + + + +
Node types (spec/API) o + + +/- + + + +
Edge types (spec/API) - - - + +/- + + + +
Attribute access (spec/API) ++ + ++/- - +/- ++ + ++ +
Constructors (node/edge) +/××× +/××× ××× ××× + + + +
Element methods (node/edge) +/××× +/××× ××× ××× ××× ××× + +
Embedding + + ××× ××× ××× ××× + +
Rules:
Modes + + o + + + + +
LHS and RHS o + o + + + + +
Parameters (spec/API) ++ + o +/- + +/- ++ +
Returns (spec/API) - + o/- +/- + +/- ++ +
Outer access to LHS ++ + - - - - ++ +
Outer access to RHS o + ××× ××× ××× ××× + +
Embedding + + ××× ××× ××× ××× + +
Rule execution:
Graph queries + + ××× ××× ××× ××× ××× ×××
XGRS ××× ××× - - - - + +
Boolean combination - + ××× ××× - - + +
- without returns + + - - - - + +
Graph traversal:
Visited flags + - ××× ××× + - + -
DFS - - - ××× ××× ××× ××× + +
Other traversals ××× ××× ××× ××× ××× ××× ××× ×××

Table 6.2: Comparison of different problems solved by XL, GrGen.NET 1.3.1, Gr-
Gen.NET including the proposed changes, and GrGen.NET with G# in terms of
convenience (Con) and type safety (TS) (identical to table 4.2)

84 CHAPTER 6. RESULTS AND EVALUATION

6.3 Performance of GrGen.NET

In chapter 4 several improvements to GrGen.NET were introduced: The refactoring
of the type architecture (see 4.1.2) and the most important part of the new type-safe
element representation (see 4.1.1) was implemented in v1.4. The rest of the latter change,
support for non-graph-element parameters and return values (see 4.2.2), and the visited
flags (see 4.2.3) have been implemented in v2.0. The type-safe graphs (see 4.1.3) and the
element constructors (see 4.2.1) have not been implemented, yet. Additionally, Sebastian
Buchwald implemented undirected edges and DPO-matching in v1.4 [Buc08] and Edgar
Jakumeit rewrote the matcher generator [Jak07] in v1.4 and added subpatterns, alternative
patterns, and arbitrary nested negative application conditions (NACs) in v2.0 [Jak08]. All
these changes added great features and improved the convenience for the user, but some of
them have a deep impact on the graph rewriting engine. So it is a valid question whether
the convenience comes at the cost of performance.

6.3.1 Memory Usage

The memory usage per graph element of the different versions of GrGen.NET is shown
in table 6.3 divided into values for 32-bit and 64-bit .NET environments. While “Node”
and “Edge” elements do not have any attributes, “Attributed Node” and “Attributed Edge”
elements contain an integer (32 bit), a string reference (size of a pointer) and three booleans
(each 8 bit), which sums up to 11 bytes for 32-bit and 15 bytes for 64-bit. In a 32-bit
environment the memory alignment is 4 byte and in a 64-bit environment 8 byte, thus the
objects are accordingly padded.

The graph element sizes have been measured on the basis of the creation of four million
accordingly typed elements. The creation loop was surrounded by calls to the common
language runtime (CLR) method GC.GetTotalMemory(true), which forces a garbage collection
and then returns the “number of bytes currently thought to be allocated” [Mic08]. Because
of the large number of allocated elements, this measurement method yields reliable results.

As shown in table 6.3 the only change in memory usage happened between v1.3.1 and
v1.4: Nodes and edges are generally one pointer size and 8 bytes smaller, i.e. 12 bytes for
32-bit and 16 bytes for 64-bit. Due to the type-safe graph elements the reference to the
external attribute object has been removed and due to changes by Edgar Jakumeit4 three
other fields were combined into one flags field. Graph elements using attributes additionally
require two pointers less memory, because the overhead of the extra attribute object does
not exist anymore5.

6.3.2 Running Time

Table 6.4 presents the running times of several benchmarks executed by version 1.2, 1.3.1,
1.4, and 2.0 of GrGen.NET. The “v2.0 *” column avoids most interpreted extended graph

4Within the scope of the preparation of nested NACs.
5For elements without attributes such objects were never allocated, of course.

6.3. PERFORMANCE OF GRGEN.NET 85

Bytes per element
Element kind v1.2 v1.3.1 v1.4 v2.0

32-Bit Process:
Node 44 44 32 32
Attributed Node 64 64 44 44
Edge 60 60 48 48
Attributed Edge 80 80 60 60
64-Bit Process:
Node 80 80 64 64
Attributed Node 112 112 80 80
Edge 112 112 96 96
Attributed Edge 144 144 112 112

Table 6.3: Memory usage per graph element of several GrGen.NET versions

rewrite sequences (XGRS) by using compiled XGRSs in form of rules only containing an
exec statement on the RHS. Although the XGRS compiler was mainly implemented for the
G# exec statement, it also proves worthy for normal rules, as the last column shows. The
given running times are the means of 40 consecutive measurements without the upper and
lower 0.2-quantiles6. The “mean relative change” is the mean of the relative changes from
the base version of this work, version 1.3.1, to the according version. If all benchmarks
would take twice the time as in version 1.3.1, the mean relative change would be 2. Version
1.2, the first stable release of GrGen.NET, is just listed for completeness and to show the
overall trend.

Due to the many changes from v1.3.1 to v2.0 it is unclear, which changes caused v2.0
to need 11.5% more running time than v1.3.1 on average (without using compiled XGRSs).
One reason might be that most graph elements cannot be directly reused during a rewrite
step, but are stored in a cache for later reuse (see section 4.1.1). Although this is far less
expensive than allocating a new object, it is less efficient, than just exchanging the type and
attribute information. The Dragon and Sierpinski benchmarks are very memory consuming,
so the smaller graph elements are probably the reason for the better running time here.

A benchmark with very interesting running times is “Busybeaver3”. In contrast to the
“Busybeaver” variant, it makes extensive use of graph variables and element attributes. The
GrGen.NET 2.0 version with compiled XGRSs only needs about 23% of the running
time required by the version with interpreted XGRSs. The most important difference with
respect to running time is, that in the compiled version the graph variables, which are
stored in a hash map of the graph object, are replaced by local variables. For the over
4.7 million applied graph transformations each using at least one graph variable, this was
obviously the dominating factor, when you see the much smaller running time reduction
to about 69% between the interpreted and compiled “Busybeaver” variant, where over

6Measured on an Intel Core 2 Quad at 2.4 GHz with 2 GB RAM running Windows Vista 64 SP1 with
the Microsoft .NET Framework 2.0.50727.1434 in 64-bit mode

86 CHAPTER 6. RESULTS AND EVALUATION

7 million transformations only take advantage of the non-interpreted code.
For the “Mutex” benchmark of size 10,000 and the “Ludo2” benchmark, the compiled

XGRS versions need more time than the interpreted ones. The reason is that now both
the XGRS interpreter as well as the compiled XGRS code has to be just-in-time compiled,
because the interpreter is still used to call the rules containing the compiled XGRSs. But
for “longer” taking benchmarks (approx. > 500 ms) this additional overhead becomes
irrelevant with respect to the performance gain.

So all in all, with the help of compiled XGRSs it is possible to get the improved
convenience and type safety for free.

Time in ms for GrGen.NET
Benchmark Size v1.2 v1.3.1 v1.4 v2.0 v2.0 *

Mutex 10,000 291 301 396 382 391
100,000 614 647 754 756 713

1,000,000 4,205 4,393 4,961 4,973 4,655
Dragon 8 2,781 2,911 2,903 2,872 2,512

9 10,981 11,065 10,869 10,615 9,673
Sierpinski 12 2,593 2,483 3,093 3,048 2,987

13 8,807 8,724 8,589 8,213 8,136
Busybeaver 5 No. 7 3,084 3,102 3,982 3,966 2,720
Busybeaver3 5 No. 7 7,674 9,278 9,686 8,544 1,933
Ludo2 (random seed=) 98754321 183 185 256 235 260

Total time 41,213 43,089 45,489 43,604 33,980
Mean relative change 0.969 1 1.153 1.115 0.982

Table 6.4: Performance comparison between several GrGen.NET versions on the basis of
the running time of several benchmarks in a 64-bit environment

Chapter 7

Conclusion and Prospects

7.1 Conclusion

The main purpose of this work was to significantly improve the development of graph
transformation based GrGen.NET applications regarding convenience, type safety, and
productivity. In order to achieve this goal, firstly, the types provided by the API were
rigorously refactored leading to type-safe and much more convenient handling of graphs,
graph element types, graph elements, and their attributes. Secondly, new features have
been introduced to GrGen.NET simplifiying element initialization, value passing between
graph rewrite rules, and implementations of graph traversals a lot. Finally, the introduction
of the embedded domain-specific language (EDSL) G# makes using graphs and graph
rewriting in applications much more comfortable, and fills up the remaining issues with
type safety.

Because of the timing constraints of this work, I searched for a simple solution to
implement a compiler for G# and started by extending an existing C# source-to-source
compiler to keep the required effort low. Sadly this didn’t work out, so I switched to
extending the heavy-weight Mono C# Compiler. The resulting partial implementation of
the G# compiler shows that it is possible to generate a compiler for a C#-based EDSL this
way. Without the detour of the first approach, the compiler implementation even would
have been finished during this work. But perhaps it would have been better to develop
the compiler using the MetaBorg approach [BV04], despite the need to create a whole C#
SDF grammar and type attribution. Due to the domain-specific languages used by this
approach, the result would have been much easier to understand, maintain, and extend.

Nonetheless, the already implemented improvements have an huge positive impact on
the usability and type safety of GrGen.NET while retaining its high performance.

7.2 Prospects

As the compiler has not been finished during this work, there is still some work to do. But
apart from this, there are some points which could use some further attention:

87

88 CHAPTER 7. CONCLUSION AND PROSPECTS

• Inheritance on graph models would allow rules specified e.g. for an XML graph model
to be also usable with an SVG model.

• To make the parameters and return values of actions (from the API point of view) type-
safe, they could be handled using normal method parameters and out/ref parameters
instead of an object array.

• Special match types could be generated providing more convenient access to LHS
elements via their names.

• More graph traversals could be supported by G#, like breadth-first-search or some
weighted searchs.

• Perhaps some sort of XL-like graph query in combination with LINQ query operators
could be interesting for G#.

• It might be desirable to bring the exec syntax a bit more to the normal expression level
to be able to write “(curAnt) = graph.Food2Ant(curAnt)* | [graph.EvaporateWorld]);”
instead of “exec(graph, (curAnt) = Food2Ant(curAnt)* | [EvaporateWorld]);”. It is un-
clear though, whether it is possible to integrate something like this into G# because
of the already existing operators and their precedences.

Acknowledgements

I would like to especially thank the following persons: Rubino Geiß for supervising me
despite his lack of time; Edgar Jakumeit for his many constructive comments and the great
discussions; Christoph Mallon for his great help with the C# Parser project and the many
interesting and less interesting discussions ;D ; Michael Beck for supervising me in times I
needed it the most; Sebastian Buchwald for his comments on some language constructs; Tom
Gelhausen for taking the time to talk about this work (especially the fordepth statement)
in an early phase of it; Jakob Blomer for providing the benchmark script.

Also I would like to thank Prof. Goos for keeping the IPD going even long after being
emeritus and for the great support for GrGen.NET, and Prof. Snelting for supporting
our project and allowing us to represent our university at the GraBaTs 2008 in Leicester,
although his field of research does not directly deal with graph rewriting.

Finally, many thanks to my wife, Ursula, for her support especially in form of cakes for
the IPD, to all who participated in the after work finger exercises, and to Chuck the Plant!

89

90 CHAPTER 7. CONCLUSION AND PROSPECTS

Appendix A

Language Definition

Embedded GrGen.NET (G#) extends the programming language C# by several domain-
specific language constructs to increase the convenience and type safety of graph rewrite
applications. In this chapter the syntax and the semantics of these constructs are defined.

A.1 C# Grammar Extensions

The new G# constructs extend the C# grammar [Ecm06] productions as follows:

1 type-declaration:
2 ...
3 | gs-model-declaration
4 | gs-rule-declaration
5 | gs-test-declaration
6 | gs-pattern-declaration
7

8 embedded-statement:
9 ...

10 | gs-match-statement
11 | gs-matchatonce-statement
12 | gs-matchaction-statement
13 | gs-matchactionatonce-statement
14 | gs-modify-match-statement
15 | gs-replace-match-statement
16 | gs-modify-statement
17 | gs-fordepth-statement
18

19 primary-no-array-creation-expression:
20 ...
21 | gs-tuple-call-expression
22 | gs-exec-expression

91

92 APPENDIX A. LANGUAGE DEFINITION

A.1.1 Definitions

In this section some definitions are introduced which are referred to in the rest of this
chapter.

1 gs-graph-expression:
2 expression

The type of this expression must be a class which implements IGraph and IGraphModel.

1 gs-model-type:
2 identifier

The name of a graph model.

1 gs-range-expression:
2 "["
3 (
4 "*"
5 |
6 "+"
7 |
8 min=expression [":" (max=expression | "*")]
9)

10 "]"

Defines a range of min to max. For “[*]” min is zero, while it is one for “[+]”. For both max is
infinity encoded as Int32.MaxInt. “[<min>:*]” sets max to infinity as well. For “[<min>]”,
max is set to min.

1 gs-action-modifier:
2 "dpo" | "induced" | "exact"

gs-action-modifier specifies how a pattern is to be matched. “dpo” means, that all edges of
deleted nodes must be specified. “induced” means, that all edges between the nodes of the
pattern must be specified for a match to be found. “exact” rules match only, when there are
no unspecified edges connecting to the nodes of the pattern. See [Buc08] for more details.

1 gs-param:
2 (
3 name=identifier ":" type=identifier
4 |
5 "var" name=identifier ":" type=identifier
6 |
7 "-" name=identifier ":" type=identifier "->"
8 |
9 "-" name=identifier ":" type=identifier "-"

10 |

A.1. C# GRAMMAR EXTENSIONS 93

11 "<-" name=identifier ":" type=identifier "->"
12 |
13 "?-" name=identifier ":" type=identifier "-?"
14)
15

16 gs-params:
17 gs-param ("," gs-param)*

Declares a parameter of an according kind with the identifier name and the type type.

1 gs-returnparam:
2 type=identifier
3

4 gs-returnparams:
5 gs-returnparam ("," gs-returnparam)*

Declares a return parameter with the type type.

1 gs-call-return-argument:
2 name=identifier [":" type=identifier]

Specifies and optionally declares a return argument. The optional part must be specified if
and only if name is not already declared in the current scope. In this case, a new local-variable
with the identifier name and the type type is added to the current scope.

A.1.2 Model Declarations

1 gs-model-declaration:
2 opt-attributes
3 "public" "model" name=identifier
4 "{" grgen-model-declbody "}"

A gs-model-declaration declares a model with the name name. A model type implements
both IGraph and IGraphModel and provides convenience methods to create elements for
every type of the model. The public modifier is here for upward compatibility, when other
access modifiers might be implemented.

A.1.3 Rule Declarations

1 gs-rule-declaration:
2 opt-attributes
3 "public" [gs-action-modifier] "rule" "<" model=gs-model-type ">" identifier
4 ["(" params=gs-params ")"]
5 [":" "(" returns=gs-returns ")"]
6 "{" gs-pattern-body (gs-modify-body | gs-rewrite-body) "}"

Declares a GrGen rule according to the GrGen syntax for the graph model specified by
model. The public modifier is here for upward compatibility, too.

94 APPENDIX A. LANGUAGE DEFINITION

A.1.4 Test Declarations

1 gs-test-declaration:
2 "public" [gs-action-modifier] "test" "<" model=gs-model-type ">" identifier
3 ["(" params=gs-params ")"]
4 [":" "(" returns=gs-returns ")"]
5 "{" gs-pattern-body "}"

Declares a GrGen test according to the GrGen syntax for the graph model specified by
model. Again the public modifier is given for upward compatibility.

A.1.5 Pattern Declarations

1 gs-pattern-declaration:
2 "public" [gs-action-modifier] "pattern" "<" model=gs-model-type ">" identifier
3 ["(" params=gs-params ")"]
4 "{" gs-pattern-body (gs-modify-body | gs-replace-body) "}"

Declares a GrGen pattern according to the GrGen syntax for the graph model specified
by model. The public modifier is here for upward compatibility, too.

A.1.6 The Match Statement

1 gs-match-statement:
2 "match" "(" gs-graph-expression ["," (max=expression | "*")] ["," gs-action-modifier] ")"
3 "{"
4 gs-pattern-body
5 gs-matched-statement
6 "}"
7 ["else" gs-matched-statement-noreplace]

The gs-match-statement searches for a match up to max-times, where the type of max must
be an integer. If max is not specified, it defaults to one. If a “*” was specified instead, max
is set to infinity. Whenever a match has been found, it executes line 5 once, where the
number of already found matches can be accessed by the special variable nummatches, the
current match by the special variable curmatch, and the pattern elements by their names as
local variables of the according interface types in the scope of the match block. If “dpo” was
specified as gs-actions-modifier, gs-matched-statement must be either a gs-modify-statement

or a gs-replace-statement. If no matches were found and an else part was specified (line 7),
this is executed instead.

The pattern is specified directly in GrGen syntax (line 4). The given graph acts as the
host-graph for the matching process. It is not guaranteed, that a different match is found
in a next iteration step, if the previous match has not been altered in such a way, that the
pattern does not match anymore.

A.1. C# GRAMMAR EXTENSIONS 95

A.1.7 The Match-At-Once Statement

1 gs-matchatonce-statement:
2 "matchatonce" "(" gs-graph-expression ["," gs-range-expression]
3 ["," gs-action-modifier] ")"
4 "{"
5 gs-pattern-body
6 gs-matched-statement
7 "}"
8 ["else" gs-matched-statement-noreplace]

The gs-matchatonce-statement searches for at least min and up to max matches as a snap-shot,
i.e. saves all matches before continuing. min and max are the minimum and maximum
values of the gs-range-expression, respectively. For each found match, it then executes
line 6 once, where all found matches can be accessed by the special IMatches variable
allmatches, their number by a special integer variable nummatches, the current match by
the special IMatch variable curmatch, and the pattern elements by their names as normal
local variables of according types in the scope of the matchatonce block. If “dpo” was
specified as gs-action-modifier, gs-matched-statement must be either a gs-modify-statement

or a gs-replace-statement. If the number of found matches is less than min and an else part
was specified (line 8), this is executed instead. If min is zero, the else part will never be
executed.

The pattern is specified directly in GrGen syntax (line 5). The given graph acts as
the host-graph for the matching process. If line 6 changes another still unprocessed match,
the match may not be valid anymore, when it becomes processed. Elements may have
been deleted, attribute or negative application conditions may be violated. It is the user’s
responsiblity to handle these problems.

A.1.8 The Match-Action Statement

1 gs-matchaction-statement:
2 "matchaction" "(" gs-graph-expression "," gs-action-call [gs-range-expression] ")"
3 gs-matched-statement
4 ["else" gs-matched-statement-noreplace]
5

6 gs-action-call:
7 ["(" gs-call-return-argument ("," gs-call-return-argument)* ")" "="]
8 ["?"] ActionName
9 ["(" [expression ("," expression)*] ")"]

A gs-matchaction-statement executes a given action up to max-times, where max is the
maximum value of the gs-range-expression whose minimum value must be one. If no
gs-range-expression is specified, it defaults to “[1]”. Whenever a match has been found, it
executes line 3 once, where the number of already found matches can be accessed through
a special variable nummatches, and the current match by the special variable curmatch.

96 APPENDIX A. LANGUAGE DEFINITION

Any variables declared as a gs-call-return-argument are only valid in the “then”-part. If no
matches were found and an else part was specified (line 4), this is executed instead.

The gs-action-call references a GrGen test or a “testified” rule with optional arguments
and return parameters. A testified rule is a rule which is prefixed by a “?” meaning that
the right hand side of the rule (including any return statements) has to be ignored. So no
return parameters may be specified for a testified rule.

The given graph acts as the host-graph for the matching process. It is not guaranteed,
that a different match is found in a next iteration step, if the previous match has not been
altered in such a way, that the pattern does not match anymore.

A.1.9 The Match-Action-At-Once Statement

1 gs-matchactionatonce-statement:
2 "matchactionatonce" "(" gs-graph-expression "," gs-action-call [gs-range-expression] ")"
3 gs-matched-statement
4 ["else" gs-matched-statement-noreplace]

A gs-matchactionatonce-statement searches for the pattern of a given action for at least min

and up to max matches as a snap-shot, i.e. saves all matches before continuing. min and
max are the minimum and maximum values of the gs-range-expression, respectively. If no
gs-range-expression is specified, it defaults to “[+]”. For each found match, it then executes
line 3 once, where all found matches can be accessed by the special IMatches variable
allmatches, their number by a special integer variable nummatches, and the current match
by the special IMatch variable curmatch.

Any variables declared as a gs-call-return-argument are only valid in the “then”-part.
If no matches were found and an else part was specified (line 4), this is executed instead.

The gs-action-call references a GrGen test or a “testified” rule with optional arguments
and return parameters just like in section A.1.8.

The given graph acts as the host-graph for the matching process. If line 6 changes
another still unprocessed match, the match may not be valid anymore, when it becomes
processed. Elements may have been deleted, attribute or negative application conditions
may be violated. It is the user’s responsiblity to handle these problems.

A.1.10 The Matched Statement

1 gs-matched-statement:
2 gs-modify-match-statement
3 | gs-replace-match-statement
4 | "do" embedded-statement
5

6 gs-matched-statement-noreplace:
7 gs-modify-match-statement
8 | "do" embedded-statement
9

10 gs-modify-match-statement:

A.1. C# GRAMMAR EXTENSIONS 97

11 "modify" "{" GrGenModifyBodyWithoutReturn "}"
12

13 gs-replace-match-statement:
14 "replace" "{" GrGenReplaceBodyWithoutReturn "}"

The gs-modify-match-statement applies modifications to the current match of the near-
est enclosing gs-match-statement, gs-matchatonce-statement, gs-matchaction-statement, or
gs-matchactionatonce-statement. The gs-replace-match-statement analogously replaces such
a current match. It is a compile-time error, if there is no nearest enclosing match statement.

The modifications and the replacement are specified according to the GrGen syntax
of a modify or replace part without return and exec statements. Before each execution of a
gs-modify-match-statement and gs-replace-match-statement it is assured that all referenced
graph elements exist. Otherwise, an InvalidOperationException is thrown.

The “do” version executes the given embedded-statement, which may also include multiple
modify and replace statements.

A.1.11 The Modify Statement

1 gs-modify-statement:
2 "modify" "(" gs-graph-expression ")" "{" GrGenModifyBodyWithoutReturn "}"

The gs-modify-match-statement applies modifications to the given graph. The modifications
are specified according to the GrGen syntax of a modify part without return and exec

statements. Before each execution of a gs-modify-match-statement it is assured that all
referenced graph elements exist. Otherwise, an InvalidOperationException is thrown.

A.1.12 The ForDepth Statement

1 gs-fordepth-statement:
2 "fordepth" "(" type identifier "in" gs-graph-expression
3 "at" startnode=expression ")"
4 [
5 "along" (gr-embedded-pattern | gr-action-call | "do" embedded-statement)
6 |
7 "child" (gr-embedded-pattern | gr-action-call | "do" embedded-statement)
8 "next" (gr-embedded-pattern | gr-action-call | "do" embedded-statement)
9 |

10 "next" (gr-embedded-pattern | gr-action-call | "do" embedded-statement)
11 "child" (gr-embedded-pattern | gr-action-call | "do" embedded-statement)
12]
13 (
14 "pre" (gs-modify-match-statement | gr-action-call | "do" embedded-statement)
15 ["post" (gs-modify-match-statement | gr-action-call | "do" embedded-statement)]
16 |
17 "post" (gs-modify-match-statement | gr-action-call | "do" embedded-statement)
18)

98 APPENDIX A. LANGUAGE DEFINITION

The gs-fordepth-statement runs a depth-first-search (DFS) over the given graph starting at
the node startnode. The DFS can be run in two modes: In the “along” mode all children
of the current node are determined by a pattern, an action call, or an embedded-statement

“yield return”-ing them. In the “child”/“next” mode the first child of the current node
is analogously determined by the “child” line and each following child is determined by
the “next” line. The current node is available through the identifier variable of type type

introduced by the fordepth-statement. For the “next” line the previous child is available as
prevchild. In every case the special variable nextnode has to be assigned the next node to
be processed. If neither “along” nor “child”/“next” parts are specified, it defaults to “along”
mode with the pattern “identifier ?-:AEdge-? nextnode:type”, which matches all nodes of
type type adjacent to the current node.

While walking the graph, first the current node (starting with startnode) is marked as
visited, then the “pre” part is executed, then all unvisited children are visited by the search,
and last the “post” part is executed. The visitor ID used for marking the nodes is available
via the special variable curvisitorid. In the “pre” and “post” parts the break-statement

causes the whole DFS to terminate and the continue-statement skips any further processing
of the current node and their children. Unprocessed children will not be marked as visited.
If the current node is removed in the “pre” part, a continue-statement is issued. If the
current node is removed while walking the children, a continue-statement is issued after the
DFS returns from the current child. New children of the current node will be processed
when they are added in the “pre” part or while walking the children.

A.1.13 The Tuple Call Expression

1 gs-tuple-call-expression:
2 "(" gs-tuple-var ("," gs-tuple-var)* ")" "?=" expression
3

4 gs-tuple-var:
5 [type=identifier] name=identifier

The gs-tuple-call-expression executes a rule given by expression and only assigns the return
values to the according gs-tuple-vars, if the rule succeeds. In this case, this expression
evaluates to true, otherwise to false .

A.1.14 The Exec Expression

1 gs-exec-expression:
2 "exec" "(" gs-graph-expression, gs-xgrs ")"

The gs-exec-expression executes the given gs-xgrs on the given graph and evaluates to a
boolean indicating success (true) or failure (false) of the rewrite sequence.

A.2. C# SEMANTIC EXTENSIONS 99

A.2 C# Semantic Extensions

A.2.1 Foreach on Graphs

1 foreach-statement:
2 "foreach" "(" type identifier "in" expression ")" embedded-statement

According to 15.8.4 of the C# language specification [Ecm06] an expression with a type
implementing multiple System.Collections.Generic.IEnumerable<T> interfaces is not allowed
to appear as an expression of a foreach-statement. But to allow an easy way of iterating
over elements of a graph compatible to a given type, the semantics of the foreach-statement
is extended. For expressions fulfilling the requirements of gs-graph-expression (see sec-
tion A.1.1) the given type determines over which elements the foreach loop should iterate.
The read-only iteration variable is declared by type and identifier. If the given type is an
interface and inherits from IGraphElement, the loop iterates over all compatible elements.
If the given type is a class and inherits from IGraphElement, the loop iterates over all
elements with exactly the given type. Otherwise, a compile-time error is produced.

100 APPENDIX A. LANGUAGE DEFINITION

Appendix B

Examples

This chapter contains three (simple) examples written in G# which already work with the
so far extended Mono C# Compiler.

Listing B.1: A G# version of the GrGen.NET “Sierpinski3” example

1 using System;
2 using de.unika.ipd.grGen.libGr;
3 using de.unika.ipd.grGen.lgsp;
4

5 using de.unika.ipd.grGen.Model_Sierpinski;
6

7 namespace testSierpinski
8 {
9 public model Sierpinski

10 {
11 node class A;
12 node class B;
13 node class C;
14

15 node class AB extends A,B;
16 node class BC extends B,C;
17 node class CA extends C,A;
18 }
19

20 public class TestSierpinski
21 {
22 public static void PrintGraphInfo(Sierpinski graph)
23 {
24 Console.WriteLine("\nNum nodes: " + graph.NumNodes
25 + "\nNum edges: " + graph.NumEdges);
26 }
27

28 public static void Main(String[] args)
29 {
30 int n;
31 i f (args.Length != 1 || !int.TryParse(args[0], out n))
32 {

101

102 APPENDIX B. EXAMPLES

33 Console.WriteLine("Usage: testSierpinski <N>");
34 return;
35 }
36

37 Sierpinski graph = new Sierpinski();
38

39 // init rule

40 modify(graph)
41 {
42 a:A;
43

44 c-->a; a-->b;
45

46 c:C; c<--b; b:B;
47 }
48

49 PrintGraphInfo(graph);
50

51 for(int i = 0; i < n; i++)
52 {
53 // gen rule

54 matchatonce(graph, [*])
55 {
56 a:A;
57

58

59

60 c-->a; a-->b;
61

62

63

64 c:C; c<--b; b:B;
65

66 replace {
67 a;
68

69 ca-->a; a-->ab;
70

71 ca:CA; ca<--ab; ab:AB;
72

73 c-->ca; ca-->bc; bc-->ab; ab-->b;
74

75 c; c<--bc; bc:BC; bc<--b; b;
76 }
77 }
78 }
79

80 PrintGraphInfo(graph);
81

82 // WORKAROUND: Mono 1.9 compiler crashes for

83 // "using(VCGDumper ...) graph.Dump(dumper);"

103

84 VCGDumper dumper = new VCGDumper("testSierpinski.vcg");
85 graph.Dump(dumper);
86 dumper.Dispose();
87 }
88 }
89 }

Listing B.2: A G# version of the GrGen.NET “Mutex” example

1 using System;
2 using de.unika.ipd.grGen.libGr;
3 using de.unika.ipd.grGen.lgsp;
4

5 using de.unika.ipd.grGen.Model_Mutex;
6

7 namespace testMutex
8 {
9 public model Mutex

10 {
11 node class Process;
12 node class Resource;
13

14 edge class next

15 connect Process [0:1] -> Process [0:1];
16

17 edge class blocked
18 connect Resource [*] -> Process [*];
19

20 edge class held_by
21 connect Resource [1] -> Process [*];
22

23 edge class token
24 connect Resource [1] -> Process [*];
25

26 edge class release
27 connect Resource [1] -> Process [*];
28

29 edge class request
30 connect Process [*] -> Resource [*];
31 }
32

33 public class TestMutex
34 {
35 public static void PrintGraphInfo(Mutex graph)
36 {
37 Console.WriteLine(
38 "\nNum nodes: " + graph.NumNodes
39 + "\nNum edges: " + graph.NumEdges
40 + "\nNum Process nodes: " + graph.GetNumExactNodes(Process.TypeInstance)
41 + "\nNum Resource nodes: " + graph.GetNumExactNodes(Resource.TypeInstance)
42 + "\nNum next edges: " + graph.GetNumExactEdges(next.TypeInstance)
43 + "\nNum request edges: " + graph.GetNumExactEdges(request.TypeInstance)

104 APPENDIX B. EXAMPLES

44 + "\nNum token edges: " + graph.GetNumExactEdges(token.TypeInstance)
45 + "\nNum release edges: " + graph.GetNumExactEdges(release.TypeInstance));
46 }
47

48 public static void Main(String[] args)
49 {
50 int n;
51 i f (args.Length != 1 || !int.TryParse(args[0], out n))
52 {
53 Console.WriteLine("Usage: testmutex <N>");
54 return;
55 }
56

57 Mutex graph = new Mutex();
58

59 // initRule

60 modify(graph)
61 {
62 p1:Process -:next-> :Process -:next-> p1;
63 }
64

65 // newRule

66 match(graph, n-2)
67 {
68 p1:Process -:next-> p2:Process;
69 replace {
70 p1 -:next-> :Process -:next-> p2;
71 }
72 }
73

74 // mountRule

75 match(graph, 1)
76 {
77 p:Process;
78 replace {
79 p <-:token- :Resource;
80 }
81 }
82

83 // requestRule

84 match(graph, *)
85 {
86 p:Process;
87 r:Resource;
88 negative {
89 r -hb:held_by-> p;
90 }
91 negative {
92 p -req:request-> m:Resource;
93 }
94

105

95 replace {
96 p -req:request-> r;
97 }
98 }
99

100 PrintGraphInfo(graph);
101

102 // WORKAROUND: Mono 1.9 compiler crashes for

103 // "using(VCGDumper ...) graph.Dump(dumper);"

104 VCGDumper dumper = new VCGDumper("testMutex.vcg");
105 graph.Dump(dumper);
106 dumper.Dispose();
107

108 for(int i = 0; i < n; i++)
109 {
110 // takeRule

111 match(graph, 1)
112 {
113 r : Resource;
114 r -t:token-> p:Process -req:request-> r;
115

116 replace {
117 r -hb:held_by-> p;
118 }
119 }
120

121 // releaseRule

122 match(graph, 1)
123 {
124 r : Resource;
125 r -hb:held_by-> p:Process;
126 negative {
127 p -req:request-> m:Resource;
128 }
129

130 replace {
131 r -rel:release-> p;
132 }
133 }
134

135 // giveRule

136 match(graph, 1)
137 {
138 r : Resource;
139 r -rel:release-> p1:Process -n:next-> p2:Process;
140

141 replace {
142 p1 -n-> p2 <-t:token- r;
143 }
144 }
145 }

106 APPENDIX B. EXAMPLES

146

147 PrintGraphInfo(graph);
148

149 // WORKAROUND: Mono 1.9 compiler crashes for

150 // "using(VCGDumper ...) graph.Dump(dumper);"

151 VCGDumper dumper2 = new VCGDumper("testMutex-2.vcg");
152 graph.Dump(dumper2);
153 dumper2.Dispose();
154 }
155 }
156 }

Listing B.3: An example just showing several already working features of G#

1 using System;
2 using de.unika.ipd.grGen.lgsp;
3 using de.unika.ipd.grGen.libGr;
4

5 using de.unika.ipd.grGen.Model_Turing;
6

7 namespace grgensharptest
8 {
9 public model Turing

10 {
11 node class BandPosition { value : int; }
12 node class State { name : string = "State"; }
13 node class WriteValue { value : int; }
14

15 edge class right
16 connect BandPosition [0:1] -> BandPosition [0:1];
17

18 edge class readZero;
19 edge class readOne;
20

21 edge class moveLeft;
22 edge class moveRight;
23 }
24

25 public test<Turing> getValueForReadZero(s:State, bp:BandPosition) : (WriteValue) {
26 s -rv:readZero-> wv:WriteValue;
27 i f {bp.value == 0;}
28 return(wv);
29 }
30

31 class testClass
32 {
33 static void PrintElemInfo(Turing graph)
34 {
35 Console.WriteLine("Num nodes: " + graph.NumNodes);
36 Console.WriteLine("Num edges: " + graph.NumEdges);
37 }
38

107

39 static void Main(String[] args)
40 {
41 Turing graph = new Turing();
42 BandPosition bp = graph.CreateNodeBandPosition();
43 for(int i = 0; i < args.Length; i++)
44 {
45 State state = graph.CreateNodeState();
46 state.name = "s" + i;
47 graph.CreateEdgeEdge(bp, state);
48 }
49

50 PrintElemInfo(graph);
51

52 modify(graph)
53 {
54 bp --> sA : State -:readZero-> wv:WriteValue;
55 eval {
56 wv.value = 1;
57 }
58 }
59 Console.WriteLine(sA.name);
60

61 PrintElemInfo(graph);
62

63 WriteValue w = null;
64 matchactionatonce(graph, (w)=getValueForReadZero(sA, bp))
65 do

66 {
67 Console.WriteLine(w.value);
68 }
69 i f (w != null)
70 Console.WriteLine("w != null");
71

72 PrintElemInfo(graph);
73

74 match(graph, 4)
75 {
76 bp --> state2 : State;
77 do

78 {
79 Console.WriteLine(state2.name);
80 modify {
81 delete(state2);
82 x : WriteValue;
83 eval {
84 x.value = 8;
85 }
86 }
87 Console.WriteLine(x.value);
88 }
89 }

108 APPENDIX B. EXAMPLES

90 else do

91 {
92 Console.WriteLine("Nothing found...");
93 }
94

95 PrintElemInfo(graph);
96

97 match(graph, 1)
98 {
99 hom(bp, bp2);

100 bp2:BandPosition;
101 replace {
102 bp2 -:right-> bp;
103 }
104 }
105

106 PrintElemInfo(graph);
107 }
108 }
109 }

Bibliography

[Bat06] Batz, Gernot V.: An Optimization Technique for Subgraph Matching Strategies
/ Universität Karlsruhe, IPD Goos.
http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf.
Version: April 2006. – Forschungsbericht

[BH05] Box, Don ; Hejlsberg, Anders: The LINQ Project.
http://msdn.microsoft.com/en-us/library/aa479865.aspx.
Version: September 2005

[BKG08] Batz, Gernot V. ; Kroll, Moritz ; Geiß, Rubino: A First Experimental
Evaluation of Search Plan Driven Graph Pattern Matching.
In: Schürr, A. (Hrsg.) ; Nagl, M. (Hrsg.) ; Zündorf, A. (Hrsg.): Proc.
3rd Intl. Workshop on Applications of Graph Transformation with Industrial
Relevance (AGTIVE ’07) Bd. NN, Springer, 2008. –
http://www.springerlink.com/content/105633/

[Buc08] Buchwald, Sebastian: Erweiterung von GrGen.NET um DPO-Semantik und
ungerichtete Kanten.
http://www.info.uni-karlsruhe.de/papers/sa_buchwald.pdf.
Version: June 2008. – Studienarbeit

[BV04] Bravenboer, Martin ; Visser, Eelco: Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions.
In: SIGPLAN Not. 39 (2004), Nr. 10, S. 365–383.
DOI: http://doi.acm.org/10.1145/1035292.1029007. – ISSN 0362–1340

[BV07] Bravenboer, Martin ; Visser, Eelco: Designing Syntax Embeddings and
Assimilations for Language Libraries.
In: Proceedings of the 4th International Workshop on Language Engineering
(ATEM 2007), 2007

[DE08] Debreuil, Robin ; Erchoff, Denis: C# Parser.
http://www.codeplex.com/csparser.
Version: May 2008

109

http://www.info.uni-karlsruhe.de/papers/TR_2006_7.pdf
http://msdn.microsoft.com/en-us/library/aa479865.aspx
http://www.springerlink.com/content/105633/
http://www.info.uni-karlsruhe.de/papers/sa_buchwald.pdf
http://doi.acm.org/10.1145/1035292.1029007
http://www.codeplex.com/csparser

110 BIBLIOGRAPHY

[Den07] Denninger, Oliver: Erweiterung des Kantenkonzepts deklarativer GES von
Einfachkanten über Hyperkanten zu ”Superkanten”.
Version: March 2007. – Universität Karlsruhe, IPD Tichy, Diplomarbeit

[Ecm06] Ecma: Standard ECMA-334: C# Language Specification.
http://www.ecma-international.org/publications/standards/Ecma-334.

htm.
Version: June 2006

[ERT99] Ermel, C. ; Rudolf, M. ; Taentzer, G.: The AGG Approach: Language and
Environment.
In: [Roz99] Bd. 2. 1999, S. 551–603

[GBG+06] Geiß, Rubino ; Batz, Veit ; Grund, Daniel ; Hack, Sebastian ; Szalkowski,
Adam M.: GrGen: A Fast SPO-Based Graph Rewriting Tool.
In: Corradini, A. (Hrsg.) ; Ehrig, H. (Hrsg.) ; Montanari, U. (Hrsg.) ;
Ribeiro, L. (Hrsg.) ; Rozenberg, G. (Hrsg.): Graph Transformations - ICGT
2006, Springer, 2006 (Lecture Notes in Computer Science), 383 – 397. – Natal,
Brasilia

[Gei08] Geiß, R.: GrGen.
http://www.grgen.net.
Version: May 2008

[Jak07] Jakumeit, Edgar: Vorarbeiten für die Erweiterung des Graphersetzungssystems
GrGen um dynamisch zusammengesetzte Muster.
http://www.info.uni-karlsruhe.de/papers/sa_jakumeit.pdf.
Version: September 2007. – Studienarbeit

[Jak08] Jakumeit, Edgar: Mit GrGen.NET zu den Sternen – Erweiterung der Regel-
sprache eines Graphersetzungswerkzeugs um rekursive Regeln mittels Sterngraph-
grammatiken und Paargraphgrammatiken.
http://www.info.uni-karlsruhe.de/papers/da_jakumeit.pdf

Version: July 2008. – Diplomarbeit

[KKBS05] Kurth, Winfried ; Kniemeyer, Ole ; Buck-Sorlin, Gerhard: Relational
Growth Grammars - A Graph Rewriting Approach to Dynamical Systems with
a Dynamical Structure.
In: Unconventional Programming Paradigms, Springer, 2005 (Lecture Notes in
Computer Science), S. 56 – 72

[Kro07] Kroll, Moritz: GrGen.NET: Portierung und Erweiterung des Graphersetzungs-
systems GrGen.
http://www.info.uni-karlsruhe.de/papers/sa_kroll.pdf.
Version: May 2007. – Studienarbeit

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.grgen.net
http://www.info.uni-karlsruhe.de/papers/sa_jakumeit.pdf
http://www.info.uni-karlsruhe.de/papers/da_jakumeit.pdf
http://www.info.uni-karlsruhe.de/papers/sa_kroll.pdf

BIBLIOGRAPHY 111

[Leh08] Lehrstuhl Grafische Systeme, BTU Cottbus: grogra.de - XL.
http://www-gs.informatik.tu-cottbus.de/grogra.de/grammars/xl.html.
Version: May 2008

[Lin02] Lindenmaier, Götz: libFIRM – A Library for Compiler Optimization Research
Implementing FIRM.
http://www.info.uni-karlsruhe.de/papers/Lind_02-firm_tutorial.ps.
Version: September 2002. – Universität Karlsruhe, IPD Goos, Forschungsbericht
Nr. 2002-5.

[Lut08] Lutz Roeder: Reflector for .NET.
http://www.aisto.com/roeder/dotnet/.
Version: June 2008

[Mic08] Microsoft: GS.GetTotalMemory Method (System).
http://msdn.microsoft.com/de-de/library/system.gc.

gettotalmemory(en-us).aspx.
Version: August 2008

[Mon08a] Mono Developer Team: Mono.
http://www.mono-project.com/CSharp_Compiler.
Version: March 2008

[Mon08b] Mono Developer Team: Mono.
http://www.mono-project.com.
Version: March 2008

[Roz99] Rozenberg, G. (Hrsg.): Handbook of Graph Grammars and Computing by
Graph Transformation.
World Scientific, 1999

[Sau02] Sauer, Hermann: Relationale Datenbanken.
Pearson Education Deutschland, 2002

[Sch08] Schreiner, Axel: jay.
http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.

html.
Version: August 2008

[SDF08] SDF Developer Team: SDF.
http://www.program-transformation.org/Sdf/WebHome.
Version: May 2008

[SNZ08] Schürr, A. (Hrsg.) ; Nagl, M. (Hrsg.) ; Zündorf, A. (Hrsg.): Applications
of Graph Transformation with Industrial Relevance, Proceedings of the Thrird
International AGTIVE 2007 Symposium, Schlosshotel am Bergpark Wilhelmshöhe,

http://www-gs.informatik.tu-cottbus.de/grogra.de/grammars/xl.html
http://www.info.uni-karlsruhe.de/papers/Lind_02-firm_tutorial.ps
http://www.aisto.com/roeder/dotnet/
http://msdn.microsoft.com/de-de/library/system.gc.gettotalmemory(en-us).aspx
http://msdn.microsoft.com/de-de/library/system.gc.gettotalmemory(en-us).aspx
http://www.mono-project.com/CSharp_Compiler
http://www.mono-project.com
http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.html
http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.html
http://www.program-transformation.org/Sdf/WebHome

112 BIBLIOGRAPHY

Kassel, Germany.
Bd. 5088. Heidelberg : Springer Verlag, 2008 (Lecture Notes in Computer Science
(LNCS))

[Str08] Stratego/XT Developer Team: Stratego/XT.
http://www.program-transformation.org/Stratego/WebHome.
Version: May 2008

[Zü08] Zündorf, Albert: AntWorld.
http://www.se.eecs.uni-kassel.de/~fujabawiki/index.php/AntWorld.
Version: May 2008. – GraBats 2008 workshop

http://www.program-transformation.org/Stratego/WebHome
http://www.se.eecs.uni-kassel.de/~fujabawiki/index.php/AntWorld

	Introduction
	GrGen.NET
	Motivation
	What can be done?

	Related Work
	Simple Approaches
	LINQ
	C Preprocessor

	Embedded Domain-Specific Languages
	Embedded SQL
	XL

	Ways to Implement an EDSL
	MetaBorg
	C# Parser
	The Mono C# Compiler

	Scenario and Problem Analysis
	Model Specification
	Rule Specification
	Simple Rule Execution
	Executing Many Rules
	Graph Modification
	Creation and Initialization of Single Elements
	Deletion of Single Elements
	More Complex Graph Modifications (irregular)
	More Complex Graph Modifications (regular)
	Conclusion

	Working with Matches
	Graph Traversal
	Conclusion
	Model
	Rules
	Rule Execution
	Graph Traversal

	Proposed Solutions
	GrGen.NET API Changes
	Assimilating Attributes into Graph Elements
	Refactoring the Graph Model API Architecture
	Type-safe Handling of Graphs

	New GrGen.NET Features
	Element Constructors
	Non-Graph-Element Parameters and Return Values
	Visited Flags

	Embedded GrGen.NET: G#
	Model Specification
	Rule Specification
	Domain-Specific Syntax in Methods
	Treating Rule Applications like Methods
	Supporting XGRSs
	Special Syntax for Depth-First Search

	Conclusion
	Model
	Rules
	Rule Execution
	Graph Traversal

	Implementation
	The Mono C# Compiler
	Extending the Mono C# Compiler
	Lexer
	Parser

	Results and Evaluation
	Benefit of Using G#
	Short Introduction to libFirm
	Example: The Weight of a Method Parameter
	Example: Finding a Rotl Pattern
	Evaluation

	Usability Improvements
	Performance of GrGen.NET
	Memory Usage
	Running Time

	Conclusion and Prospects
	Conclusion
	Prospects

	Language Definition
	C# Grammar Extensions
	Definitions
	Model Declarations
	Rule Declarations
	Test Declarations
	Pattern Declarations
	The Match Statement
	The Match-At-Once Statement
	The Match-Action Statement
	The Match-Action-At-Once Statement
	The Matched Statement
	The Modify Statement
	The ForDepth Statement
	The Tuple Call Expression
	The Exec Expression

	C# Semantic Extensions
	Foreach on Graphs

	Examples

