A GrGen.NET solution of the AntWorld case
for the GraBaT's 2008 Contest

Sebastian Buchwald and Moritz Kroll

July 11, 2008

1 Introduction

The challenge of the AntWorld case is to simulate an expanding ant colony
using graph transformation (see [1] for details).

2 What is GrGen.NET?

GRGEN.NET is an application domain neutral graph rewrite system devel-
oped at the IPD Goos of Universitdt Karlsruhe (TH), Germany [2]. The
feature highlights of GRGEN.NET regarding practical relevance are:

Fully Featured Meta Model: GRGEN.NET uses attributed and typed
multigraphs with multiple inheritance on node/edge types.

Expressive Rules, Fast Execution: The expressive and easy to learn
rule specification language allows straightforward formulation of even
complex problems while remaining one of the fastest automatic graph
rewrite systems known to us (cf. [3]).

Programmed Rule Application: GRGEN.NET has a high-level inter-
face to programmed rule application: Graph Rewrite Sequences (GRS).

Graphical Debugging: GRSHELL, GRGEN.NET’s command line shell,
offers interactive execution of rules, visualising the current graph and
the rewrite process. This way you can see what the graph looks like
at a given step of a complex transformation and develop the next step
accordingly. Or you can debug your rules.

3 Modelling the Ant World

The area grid consists of GridNodes connected by directed GridEdges with
the special AntHill GridNode as the center of each ant’s life. With each
GridNode we associate an integer amount of food and ant pheromones. At
this point we had to consider, what additional information we would need

later on. Firstly the ants always have to know the direction back to the
ant hill. This can be realized by marking the GridEdges, which connect
different circles of the grid, as PathToHill edges directed towards the hill.
Secondly we have to recognize the main axes of the grid in order to expand
the grid according to the specification. We can solve this by using the
GridCorner Node subtype for the nodes on the axes. We fix the remaining
GridEdges, i.e. the circle edges, to always use the same circular direction
making it easier to build the next circle afterwards. The specification says
that every 10th created GridNode shall get 100 units of food. We handle
this by adding a foodCountdown attribute to the unique AntH4ill node type
and initializing it with 10.

The ants are modelled as nodes with a boolean attribute hasFood indi-
cating whether the ant currently carries food. The current location of each
Ant is given by an AntPosition edge pointing from the Ant to the accord-
ing GridNode. We manage the ants in a singly-linked list using NextAnt
edges to ensure that each ant moves exactly once in a round. The list can
be traversed using the GetNextAnt rule.

4 Building up the Grid

During initialization of the simulation (InitWorld rule) we create a 4x4
grid of empty GridNodes with an AntHill in the center, as described in the
specification. The initial 8 Ants will start swarming from the AntHill.

To keep the illusion of an endless world in the ants’ minds, we have to
make sure they never fall off the edge of the world. So at the end of each
round, we check, whether an Ant has reached the outer circle (indicated by
the ReachedEndOfWorld rule). If we find such an Ant, we construct a
new circle around the grid by extending each node on the current outer circle,
starting at the Ant’s position. For each step we have to distinguish whether
we extend a normal GridN ode receiving one child (. .. NotAtCorner rules)
or a GridCorner Node receiving three children (... AtCorner rules). The
new outer circle is built up in three phases: The first phase just extends the
GridNode at the Ant’s position (GrowWorldFirst. ..), the second phase
extends all following Grid N odes along the old outer circle and connects their
children to the corresponding predecessor (GrowWorldNext. ..), and the
last phase closes the new circle (GrowWorldEnd). For each created child
we decrement the foodCountdown attribute of the AntHill and place 100
food units on the new child, if the counter reaches zero. Inside the Grow-
World. .. rules we test this by calling the GrowFoodIfEqual rule, which
places food at the given GridNode when the foodCountdown attribute
equals some parameter. Providing this parameter is required because of the
corner nodes receiving three child nodes at once, making it necessary to call
the GrowFoodIfEqual rule three times. Although GRGEN.NET already

© 0 N O g s W N =

=
[=}

1
2
3
4
5
6
7
8
9

supports values next to graph elements as parameters, the current beta does
not allow integer constants in GRS execution statements (exec). Thus, we
had to create three special nodes with an attribute always being 0, -1, and
-2, respectively (the GammelFiz types; “Gammel” can be translated as
scruffy).

The graph rewrite sequence for the grid extension is:

(cur:GridNode)=ReachedEnd0fWorld &&

(
(cur, curOuter:GridNode)=GrowWorldFirstNotAtCorner(cur) ||
(cur, curOuter)=GrowWorldFirstAtCorner (cur)

) &&

(
(cur, curOuter)=GrowWorldNextNotAtCorner(cur, curOuter) ||
(cur, curOuter)=GrowWorldNextAtCorner (cur, curOuter)

)* &&

GrowWorldEnd(cur, curOuter)

We also tried an alternative implementation which models the border
GridNodes as special type. It sped up checking whether an Ant reached
the outer circle at the expense of retyping the special nodes to normal
GridNodes while expanding the grid. Unfortunately, our empirical stud-
ies showed, that the running time was slightly higher.

5 Controlling the Ants

Initially the eight ants search for food choosing their direction randomly
(SearchAimless). To provide fair random selection we had to add a mech-
anism to GRGEN.NET which randomly selects a given number of matches
for a given rule. Otherwise it would have been necessary to fall back to the
API making development and debugging less convenient.

When an Ant finds food, it takes one unit (TakeFood) and starts mov-
ing home dropping pheromones on its way (GoHome). If the Ant reaches
the AntHill, it drops the food (DropFood) and follows a random phero-
mone trail back to an assumed food supply (SearchAlongPheromones).

The graph sequence handling all Ants is:

curAnt:Ant=firstAnt &&
(
(
TakeFood(curAnt) | GoHome(curAnt) ||
DropFood(curAnt) | ($[SearchAlongPheromones(curAnt)] ||
$[SearchAimless(curAnt)])
) &&
(curAnt)=GetNextAnt (curAnt)
) %

6 A new Day in the Ant World

After each round the AntHill produces one new Ant for each food unit
dropped by the Ants (Food2Ant) and the pheromones evaporate a bit
(EvaporateWorld). We implemented this by transforming food into Ants
as long as there is food left in the AntHill and by multiplying the phero-
mones attribute of each GridNode by 0.95:

(curAnt)=Food2Ant (curAnt)* | [EvaporateWorld]

7 An Optimizing Trick

The GRS execution statements (exec) on the RHS of the rules have a great
advantage over the “xgrs” statements in GRSHELL scripts. The former are
compiled while the latter are interpreted. So, by moving the main GRS from
the GRSHELL script into the doAntWorld rule, we were able to reduce the
running time by 27%. On the downside, it is not possible to set breakpoints
at single rules anymore. You can only single step through the whole simu-
lation. For this reason we left an outcommented version of the GRS in the
GRSHELL script to let the interested reader use the full debugging features,
which can also be used to animate the ant’s life.

Figure 1: An AntWorld before grid extension after 61 rounds

—t -
= E=m
2. = = -
e]
r -l
- A Tt e)
- aw =g ='- -
- - = = Lo
- - - [- -
= - -‘!'.._ —m ™ - -
- T W Eem -
- e e E T -
T . Ewm - = ==
mi - o T . —
S i
b - e
= W == "
- -._- [

8 Results

This test case needs a random number generator, which has not been spec-
ified, thus the comparability of the results is questionable. But our experi-
ments with different initial random seeds suggest that the results are quite
stable.

Table 1: Results of different rounds; running time in ms

rounds || circles | grid nodes | food created ants | running time
125 21 1,765 17,400 3,300 409
250 56 12,545 125,200 | 12,679 4,609
500 126 63,505 634,800 | 35,185 34,654
750 198 156,817 1,568,000 | 61,387 104,060
1,000 275 302,501 3,024,800 | 87,856 232,005
1,250 353 498,437 4,984,200 | 116,261 460,956
1,500 430 739,601 7,395,800 | 144,039 788,603
1,750 515 | 1,060,901 10,608,800 | 172,749 1,215,982
2,000 593 | 1,406,597 14,065,800 | 203,582 1,758,737

Table 1 shows the number of grid nodes and ants and the computation time
of this solution for different number of rounds always using the same initial
random seed 42. The results were measured on an AMD Athlon XP 3000+
with 1 GB RAM (Windows XP SP2, .NET 2.0.50727.42, GrGen.NET 2.0
Beta 3). All measurements have been repeated 10-times. The result values
are the 0.2 quantile of these values for each number of rounds. Note that the
grid nodes also contain the AntHill in our model. The GRSHELL uses 66,320
kiB virtual memory after 250 rounds, and 90,156 kiB after 500 rounds.

9 Conclusion

With GRGEN.NET it was possible to create a first running version of this
simulation in a few hours starting with reading and understanding the spec-
ification, adding the random-selection feature included. The available fea-
tures of GRGEN.NET allowed us to write the graph model and most rules in
a very intuitive way. Only the missing support of value parameters in execs
was a bit cumbersome, which will be implemented in the official release of
GRGEN.NET 2.0.

References

[1] Ziindorf, A.: AntWorld (2008) Submitted to GraBaTs 2008 Contest.

[2] GeiB, R.: GrGen. http://www.grgen.net (2008)

[3] Schiirr, A., Nagl, M., Ziindorf, A., eds.: Applications of Graph Trans-
formation with Industrial Relevance, Proceedings of the Thrird Inter-
national AGTIVE 2007 Symposium, Schlosshotel am Bergpark Wil-
helmshohe, Kassel, Germany. Volume 5088 of Lecture Notes in Com-
puter Science (LNCS)., Heidelberg, Springer Verlag (2008)

A The Graph Model

node class GridNode
{
food: 2nt;
pheromones: int;
}
node class GridCornerNode exztends GridNode;
node class AntHill extends GridNode
{

© oo ~ o = W » —

foodCountdown: int = 10;

10 }

11 node class Ant

12 {

13 hasFood:boolean;

14 }

15

16 node class GammelFix

17 {

18 val:int;

19 }

20

21 node class Zero extends GammelFix;

22 node class MinusOne extends GammelFix { val = -1; }
23 node class MinusTwo extends GammelFix { val
24

25 edge class GridEdge connect GridNode[1] —-> GridNode[1];
26 edge class PathToHill extends GridEdge;

27

28 edge class AntPosition;

290 edge class NextAnt;

B The Rule Specification

[}
|
N
[

1 using AntWorld;

2

3 rule InitWorld : (Ant)

4 {

5 modify {

6 // Create all grid nodes
7

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55

hill:AntHill;
al:GridCornerNode; a2:GridNode;

b1:GridNode;
c1:GridNode;

a3:GridNode;

a4 :GridCornerNode;

b2:GridCornerNode; b3:GridCornerNode; b4:GridNode;
c2:GridCornerNode; c3:GridCornerNode; c4:GridNode;
d1:GridCornerNode; d2:GridNode;

// Connect first circle

hill <-
hill <-
hill <-
hill <-

:PathToHill-
:PathToHill-
:PathToHill-
:PathToHill-

b2;
b3;
c3;
c2;

d3:GridNode;

d4:GridCornerNode;

b2 -:GridEdge—> b3 -:GridEdge—> c3 -:GridEdge—> c2 -:GridEdge —> b2;

// Connect second circle

b2 <-
b2 <-

b3 <-:
:PathToHill-
:PathToHill-

b3 <-
b3 <-

c3 <-:
c3 <-:
:PathToHill-

c3 <-

c2 <-

c2 <-:
c2 <-:

:PathToHill-
:PathToHill-
b2 <-:

PathToHill-

PathToHill-

PathToHill-
PathToHill-

:PathToHill-

PathToHill-
PathToHill-

bl;
al;
a2;

a3;
a4;
b4;

c4;
d4;
d3;

dz;
di;
cl;

al -:GridEdge—> a2 -:GridEdge—> a3
a4 -:GridEdge—> b4 -:GridEdge—> c4
d4 -:GridEdge—> d3 -:GridEdge—> d2

dl -:GridEdge—> ci

// Create ants

-:GridEdge—> bl

queen:Ant -:AntPosition—> hill;
atta:Ant -:AntPosition—> hill;
flick:Ant -:AntPosition—> hill;
chuck:Ant -:AntPosition—> hill;
the:Ant -:AntPosition—> hill;
plant:Ant -:AntPosition—> hill;
chewap:Ant -:AntPosition—> hill;
cici:Ant -:AntPosition—> hill;

:GridEdge—> a4;
:GridEdge—> d4;
:GridEdge—> di;
:GridEdge—> al;

67

}

queen -:NextAnt-> atta -:NextAnt-> flick -:NextAnt-> chuck -:NextAnt-> the
—:NextAnt-> plant -:NextAnt-> chewap -:NextAnt-> cici;

// The ultimate GAMMEL FIX(tm)!!!!
:Zero; :MinusOne; :MinusTwo;

return (queen) ;

rule TakeFood(curAnt:Ant)

{

3

curAnt -:AntPosition—> n:GridNode\AntHill;
if { !'curAnt.hasFood &% n.food > 0; }

modify {
eval {
curAnt.hasFood = true;
n.food = n.food - 1;

rule GoHome(curAnt:Ant)

{

}

if { curAnt.hasFood; }
curAnt -oldPos:AntPosition—> o0ld:GridNode -:PathToHill-> new:GridNode;

modify {
eval {
old.pheromones = old.pheromones + 1024;
}
delete(oldPos) ;
curAnt -:AntPosition—> new;

rule DropFood(curAnt:Ant)

{

if { curAnt.hasFood; }
curAnt -:AntPosition—> hill:AntHill;

modify {
eval {
curAnt.hasFood = false;
hill.food = hill.food + 1;

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152

154

rule SearchAlongPheromones(curAnt:Ant)

{

}

curAnt -oldPos:AntPosition—> o0ld:GridNode <-:PathToHill- new:GridNode;
1f { new.pheromones > 9; }

modify {
delete(oldPos) ;
curAnt -:AntPosition—> new;

rule SearchAimless(curAnt:Ant)

{

curAnt -oldPos:AntPosition—> old:GridNode <-:GridEdge—> new:GridNode\AntHill;

modify {
delete(oldPos) ;
curAnt -:AntPosition—> new;

test ReachedEndOfWorld : (GridNode)

{

}

:Ant -:AntPosition—> n[prio=10000] :GridNode\AntHill;
negative { n <-:PathToHill-; }
return (n) ;

rule GrowFoodIfEqual(n:GridNode, val:GammelFix)

{

}

hill:AntHill;
if { hill.foodCountdown == val.val; }
modify {
eval {
n.food = n.food + 100;
hill.foodCountdown = hill.foodCountdown + 10;

rule GrowWorldFirstAtCorner(cur:GridCornerNode) : (GridNode, GridNode)

{

cur -:GridEdge\PathToHill-> next:GridNode;
hill:AntHill;

zero:Zero;
minusOne:MinusOne;
minusTwo:MinusTwo;

194

}

modify {
cur <-:PathToHill- outerl:GridNode;
cur <-:PathToHill- outer2:GridCornerNode;
cur <-:PathToHill- outer3:GridNode;
outerl -:GridEdge—> outer2 -:GridEdge—> outer3;

eval {
hill.foodCountdown = hill.foodCountdown - 3;
}

return (next, outer3);
exec(GrowFoodIfEqual(outerl, minusTwo)

| | GrowFoodIfEqual(outer2, minusOne)
| | GrowFoodIfEqual(outer3, zero));

rule GrowWorldFirstNotAtCorner (cur:GridNode\GridCornerNode)

{

3

cur -:GridEdge\PathToHill-> next:GridNode;
hill:AntHill;

Zero:Zero;

modify {
cur <-:PathToHill- outer:GridNode;

eval {
hill.foodCountdown = hill.foodCountdown - 1;
}

return (next, outer);

exec(GrowFoodIfEqual(outer, zero));

(GridNode, GridNode)

rule GrowWorldNextAtCorner (cur:GridCornerNode, curOuter:GridNode)

{

(GridNode, GridNode)

cur -:GridEdge\PathToHill-> next:GridNode;
negative { cur <-:PathToHill-; }
hill:AntHill;

Zero:Zero;

minusOne:MinusOne;
minusTwo:MinusTwo;

10

204
205 modify {

206 cur <-:PathToHill- outerl:GridNode;

207 cur <-:PathToHill- outer2:GridCornerNode;

208 cur <-:PathToHill- outer3:GridNode;

209 curQuter -:GridEdge—> outerl -:GridEdge—> outer2 -:GridEdge—> outer3;
210

211 eval {

212 hill.foodCountdown = hill.foodCountdown - 3;
213 }

214

215 return (next, outer3);

216 exec(GrowFoodIfEqual(outerl, minusTwo)

217 | | GrowFoodIfEqual(outer2, minusOne)

218 || GrowFoodIfEqual(outer3, zero));

219 }

220 }

221
222 rule GrowWorldNextNotAtCorner (cur:GridNode\GridCornerNode, curOuter:GridNode)

223 : (GridNode, GridNode)

204 {

225 cur -:GridEdge\PathToHill-> next:GridNode;
226 negative { cur <-:PathToHill-; }

227 hill:AntHill;
228

229 Zero:Zero;

230

231 modify {

232 cur <-:PathToHill- outer:GridNode;
233 curOuter -:GridEdge—> outer;

234

235 eval {

236 hill.foodCountdown = hill.foodCountdown - 1;
237 }

238

239 return (next, outer);

240 exec(GrowFoodIfEqual(outer, zero));
241 }

242 }

243
244 Tule GrowWorldEnd(cur:GridNode, curOuter:GridNode)

245 {

246 cur <-:PathToHill- nextOuter:GridNode;
247 modify {

248 curOuter -:GridEdge—> nextOuter;
249 }

250 }

251

252 test GetNextAnt(curAnt:Ant) : (Ant)

11

253 {
254
255
256 }
257

curAnt -:NextAnt—> next:Ant;
return (next);

258 rule Food2Ant (lastAnt:Ant) : (Ant)

259 {
260
261
262
263
264
265
266

268
269
270 }
271

hill:AntHill;
if { hill.food > 0; }

modify {
lastAnt -:NextAnt—> newAnt:Ant -:AntPosition—> hill;
eval {
hill.food = hill.food - 1;
+

return (newAnt) ;

272 rule EvaporateWorld

273 {
274
275
276
277
278
279
280
281

n:GridNode\AntHill;
modify {
eval {
n.pheromones = (4nt) (n.pheromones * 0.95);

3

282 rule doAntWorld(firstAnt:Ant)

283 {
284
285
286
287
288
289

291
292
293
294

296
297
298
299
300
301 }

modify {
exec((curAnt:Ant=firstAnt &&
C
TakeFood(curAnt) | GoHome(curAnt) ||
DropFood(curAnt) | ($[SearchAlongPheromones(curAnt)] ||
$[SearchAimless(curAnt)])
) && (curAnt)=GetNextAnt(curAnt))*
| ((cur:GridNode)=ReachedEndOfWorld
&& ((cur, curOuter:GridNode)=GrowWorldFirstNotAtCorner (cur)
|| (cur, curCuter)=GrowWorldFirstAtCorner(cur))
&% ((cur, curOuter)=GrowWorldNextNotAtCorner(cur, curOuter)
|| (cur, curOuter)=GrowWorldNextAtCorner(cur, curQOuter))x*
&& GrowWorldEnd(cur, curOuter))
| (curAnt)=Food2Ant (curAnt) *
| [EvaporateWorld]
) [250]1);

12

© oo ~ o = W » —

W oW W NN NN NN NN NN R R R e R e e e
N OH O © N O U R W N O © N O W NN = O

C The GrShell Script

new graph AntWorld

#debug set layout Organic

#dump set node Ant color red
#dump add node Ant infotag hasFood
#dump add edge NextAnt exclude
#dump add node GammelFix exclude

randomseed 42
xgrs (firstAnt)=InitWorld
xgrs doAntWorld(firstAnt)

#debug xgrs (curAnt=firstAnt && \
O\

| ((cur)=ReachedEndOfWorld \

#
#
#
#
#
#
#
#
#
#
#
| (curAnt)=Food2Ant (curAnt)* \
| [EvaporateWorld] \

) [250]

show num nodes GridNode

show num nodes Ant

TakeFood(curAnt) | GoHome(curAnt) || \
DropFood(curAnt) | ($[SearchAlongPheromones(curAnt)] || \
$[SearchAimless(curAnt)]) \
) && (curAnt)=GetNextAnt(curAnt))* \

&& ((cur, curOuter)=GrowWorldFirstNotAtCorner(cur) \
|| (cur, curOuter)=GrowWorldFirstAtCorner(cur)) \
&& ((cur, curOuter)=GrowWorldNextNotAtCorner(cur, curOuter) \
|| (cur, curOuter)=GrowWorldNextAtCorner(cur, curOuter))* \
&% GrowWorldEnd(cur, curQOuter)) \

13

