
A GrGen.NET solution of the Program

Comprehension case

for the GraBaTs 2009 Contest

Sebastian Buchwald Edgar Jakumeit Moritz Kroll

May 22, 2009

1 Introduction

The challenge of the Program Comprehension case is to gain specific infor-
mation out of a given Java program using graph transformation (see [1] for
details). After a short description of the GrGen.NET system, we discuss
the first part of the challenge and give an introduction into our solution,
followed by a presentation of the second part of the challenge and our cor-
responding solution. Finally, we conclude.

2 What is GrGen.NET?

GrGen.NET is an application domain neutral graph rewrite system devel-
oped at the IPD Goos of Universität Karlsruhe (TH), Germany [2]. The
feature highlights of GrGen.NET regarding practical relevance are:

Fully Featured Meta Model: GrGen.NET uses attributed and typed
multigraphs with multiple inheritance on node/edge types.

Expressive Rules, Fast Execution: The expressive and easy to learn
rule specification language allows straightforward formulation of even
complex problems while remaining one of the fastest automatic graph
rewrite systems known to us (cf. [3]).

Programmed Rule Application: GrGen.NET has a high-level inter-
face to programmed rule application: Graph Rewrite Sequences (GRS).

Graphical Debugging: GrShell, GrGen.NET’s command line shell,
offers interactive execution of rules, visualising the current graph and
the rewrite process. This way you can see what the graph looks like
at a given step of a complex transformation and develop the next step
accordingly. Or you can debug your rules.

1



3 The Filtering Task

The first task is to select all classes that declare a public static method
whose return type is the class itself. The goal of the task is to evaluate the
scalability of the tool on large graphs, regarding memory consumption and
execution speed.

AST
(GrGen)

AST
(XMI)

AST model
(Ecore)

AST model
(GrGen)

AST
(GrGen)

conformsTo
import
filter

The java programs to be filtered are given as abstract syntax trees of
increasing size, each syntax tree following a common model. Both the ast
model and the ast itself are given as XMI files which need to be imported
into the graph rewriting system first posing a major non-graph rewriting ob-
stacle. As shown in the figure above, the given Ecore model was transformed
to a GrGen.NET-specific graph model (.gm-file) by mapping classes with
their attributes to corresponding GrGen-classes with attributes, transfer-
ring inheritance one-to-one and mapping references to edge classes. Class
names are prefixed by the names of the packages they are contained in.
The instance graph XMIs following the Ecore XMI meta model are then
imported into the system under remapping to the GrGen-model. Now that
we have all the information available we can begin with graph rewriting by
executing GrGen rewrite rules as they are specified in the task1.grg rule
file. The workhorse rule is

rule filter(var visID:int, var counter:int):(int) {
type:TypeDeclaration -:AbstractTypeDeclaration_name-> name:SimpleName;
method:MethodDeclaration;
method <-:AbstractTypeDeclaration_bodyDeclarations- type;
method -:MethodDeclaration_returnType-> returnType:SimpleType;
returnType -:SimpleType_name-> returnName:SimpleName;
publicModifier:Modifier <-:BodyDeclaration_modifiers- method;
staticModifier:Modifier <-:BodyDeclaration_modifiers- method;

if { !visited(type, visID);
name.identifier == returnName.identifier;
publicModifier.public == true;
staticModifier.static == true;

}

/* Rewrite part ... */

}

2



The pattern part is built up of node and edge declarations or references
with an intuitive syntax: Nodes are declared by n:t, where n is an optional
node identifier, and t its type. An edge e with source x and target y is
declared by x -e:t-> y, whereas --> introduces an anonymous edge of
type Edge. Nodes and edges are referenced outside their declaration by n
and -e->, respectively. An attribute condition is given within the if-clause,
constraining the allowed attribute value of some matched elements; here we
check that the return type of the method is the class itself and that the
method is public and static. Pattern elements and values may be handed in
from the outside as parameters.

rule filter(var visID:int, var counter:int):(int) {
/* Pattern part ... */

modify {
eval {
visited(type, visID) = true;

}
emit("\t<View:Class xmi:id=\"a" + counter +

"\" name=\"" + name.identifier + "\"/>\n");

return (counter + 1);
}

}

The rewrite part is specified by a modify-block nested within the rule.
Normally here you would add new graph elements or delete old graph el-
ements, but in this case we only want to mark the found class as already
visited. Furthermore we emit the corresponding XMI-tag by using the emit
statement. Marking the class as visited in the rewrite part and checking for
not being visited in the pattern part ensures that each class is emitted only
once, even if it possesses several methods which fulfill the filtering criteria.

The benchmark results for the filtering task are given in the following
table.

set no. import time import size shell time shell size filter time
0 2,142 21 208 34 5
1 3,874 60 785 111 10
2 27,206 445 10,317 924 26
3 60,581 971 30,935 1,962 57
4 64,896 1,049 34,486 2,068 58

Table 1: Results for different input sets; running time in ms, memory usage
in MiBytes.

As one can see easily, the time for filtering by application of the graph
rewriting rule is negligible and completely dominated by the time needed

3



for importing the graph. The given values are computed as the arithmetic
mean of the middle 3 values out of 5 measurements, on a Core i7 920 with
6 GiBytes of main memory under Windows Vista 64 Bit with MS .NET
64 Bit. Import time is the time needed for importing the graph, import size
is the size of the heap after importing the graph. Shell time is the additional
time to transform the imported graph as it would show up on API level to a
named graph as used by the GrShell of the rapid prototyping environment,
shell size is the size of the heap after the named graph was constructed.
Filter time is the time for the iterated application of the filtering rule until
all matches were found and dumped.

4 The Analysis Task

The goal of the second task is to compute a control flow graph out of the ab-
stract syntax tree and then to compute a program dependence graph out of
the control flow graph. Both graphs must be exported as XMI conforming to
given graph models. The second task is independent from the first one, but
a real world program comprehension task as posed by a software developer
working with a program would consist of filtering a given program graph for
a criterion currently under interest and then doing a detailed analysis of the
filtered result (thus combining both tasks).

The control flow graph is computed by successive transformations of the
AST:

1. Compute the infix string representation of all expressions which is
necessary to name the CFG nodes.

2. Insert control flow edges into the abstract syntax tree.

3. Retype all AST nodes of relevance to control flow into CFG nodes.

4. Remove remaining AST nodes.

In accordance with the task description, only certain important language
constructs (if, while, . . . ) are prototypically transformed; taking care of
all of the AST nodes would be beyond the scope of this challenge.

Analogously to the first task the XMI representation is created by graph
transformation rules with emit statements. These rules are controlled by
several graph rewrite sequences contained in the GrShell script task2.grs.
For example

xgrs ((n, id) = CFG_node_by_id(id) && CFG_dump_AbstractNode(n))*

iteratively gets the node for an increasing id and dumps it.
Based on the control flow graph, shown in Figure 1, we built the data de-

pendencies and the control dependencies of the program dependence graph.

4



Figure 1: Constructed control flow graph.

Computing the data dependence graph is rather straight-forward and will
be shown later on, first we will have a look at computing the control de-
pendence graph which is done in several steps: The first step is to compute
post dominance. A statement y post-dominates a statement x iff every path
from x to the exit node contains y. This is normally computed by the flow
equations:

PD(exit) = {exit}

PD(n) = {n} ∪

 ⋂
p∈succ(n)

PD(p)

 , n 6= exit

where PD(n) is initialized with all CFG nodes. We implemented this ap-
proach with graph transformation: If a node x is contained in the set PD(n)
there is an edge x → n of type pdom. As initialization we use the reflexive
transitive closure of the reverse control flow edges which is a less overesti-
mated version as the one described in the equations above (saving us numer-
ous edges thus being more efficient). The intersection is realized stepwise
by removing a post dominance edge targeting a node n whose source node x
does not postdominate all control flow successors of n and then propagating
the removal to transitive edges. The next step is to compute post dominance
frontiers for each node n, formally defined as follows:

PDF (n) = {n′ | ∃x ∈ succ(n′) : n pdom x ∧ ¬(n spdom n′)}

5



Figure 2: Program dependence graph with control dependence edges
(dashed) and data dependence edges.

where spdom denotes strict post dominance, i.e. non-reflexive post domi-
nance. Its graph rewriting realization consists of adding a post dominance
frontier edge from a node n to a node n′ iff there is a control flow successor
node x of n′ which is post dominated by n (target of a post-dominance edge
from n), but n′ is not. Using the fact that n is control dependent on n′

iff n′ ∈ PDF (n), we insert the needed control dependence edges into the
graph.

Data dependencies were computed the standard way from uses and def-
initions, i.e. compute use and def for each expression1, then compute all
paths from definitions to uses without another definition of the same vari-
able on it and add a data dependence edge for each such path. Exporting

1In order to compute the use and def information for the expressions an adaption of
the CFG model was necessary.

6



was done the same as for the control flow graph. The resulting program
dependence graph is shown in Figure 2, whereas control dependencies are
denoted by red dashed edges and data dependencies by black edges.

5 Conclusion

In this paper we presented GrGen.NET solutions to task one (filtering)
and task two (analysis) of the Program Comprehension challenge, and thus
showed the scalability and genericity of GrGen.NET (1+1=5 Points), i.e.
that performance is not gained at the expense of reduced expressiveness.
Our solution shows, firstly, that the graph rewriting approach is well suited
for program comprehension, and secondly, that by now the graph rewriting
community has produced tools capable of handling large, real world tasks.

References

[1] Sottet, J.S., Jouaolt, F.: Program comprehension (2009)
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/
grabats2009reverseengineering.pdf.

[2] Geiß, R.: GrGen. http://www.grgen.net (2008)

[3] Schürr, A., Nagl, M., Zündorf, A., eds.: Applications of Graph Trans-
formation with Industrial Relevance, Proceedings of the Thrird Inter-
national AGTIVE 2007 Symposium, Schlosshotel am Bergpark Wil-
helmshöhe, Kassel, Germany. Volume 5088 of Lecture Notes in Com-
puter Science (LNCS)., Heidelberg, Springer Verlag (2008)

7

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://www.grgen.net

	Introduction
	What is GrGen.NET?
	The Filtering Task
	The Analysis Task
	Conclusion

