
A GrGen.NET solution of the Model Migration

Case for the Transformation Tool Contest 2010

Sebastian Buchwald Edgar Jakumeit

June 5, 2010

1 Introduction

The challenge of the Model Migration Case [1] is to migrate an activity
diagram from UML 1.4 to UML 2.2. We employ the general purpose graph
rewrite system GrGen.NET (www.grgen.net) to tackle this task. After a
short description of the GrGen.NET system, we give an introduction into
our solution of the core assignment, followed by a discussion of the various
extensions proposed by the case authors. Finally, we conclude.

2 What is GrGen.NET?

GrGen.NET is an application domain neutral graph rewrite system devel-
oped at the IPD Goos of Universität Karlsruhe (TH), Germany [2]. The
feature highlights of GrGen.NET regarding practical relevance are:

Fully Featured Meta Model: GrGen.NET uses attributed and typed
multigraphs with multiple inheritance on node/edge types. Attributes
may be typed with one of several basic types, user defined enums, or
generic set and map types.

Expressive Rules, Fast Execution: The expressive and easy to learn
rule specification language allows straightforward formulation of even
complex problems, with an optimized implementation yielding high
execution speed at modest memory consumption.

Programmed Rule Application: GrGen.NET supports a high-level rule
application control language, Graph Rewrite Sequences (GRS), offer-
ing logical, sequential and iterative control plus variables and storages
for the communication of processing locations between rules.

Graphical Debugging: GrShell, GrGen.NET’s command line shell,
offers interactive execution of rules, visualising together with yComp
the current graph and the rewrite process. This way you can see what
the graph looks like at a given step of a complex transformation and
develop the next step accordingly. Or you can debug your rules.

1

www.grgen.net

Activity
(XMI)

UML 1.4 model
(Ecore)

Activity
(GrGen)

UML 1.4 model
(GrGen)

Activity
(GrGen)

UML 2.2 model
(GrGen)

Activity
(XMI)

UML 2.2 model
(Ecore)

conformsTo import transformation export

Figure 1: Processing steps of the model migration. The transformation and
the XMI export are written in GrGen.NET languages. Import is handled by
a supplied import filter, which generates .gm files as an intermediate step.

3 The Core Assignment

The task of the core assignment is to migrate an activity diagram conforming
to an UML 1.4 metamodel to a semantically equivalent activity diagram
conforming to an UML 2.2 metamodel. The aim of the task is to evaluate the
solutions regarding correctness, conciseness and clarity, or better to evaluate
the participating tools in how far they allow for such solutions. Before the
transformation can take place, the activity diagram needs to be imported
from an Ecore file describing the source model and an XMI file specifying
the graph. Afterwards the resulting activity diagram has to be exported into
an XMI file conforming to a given Ecore file describing the target model.

3.1 Importing the Graph

As GrGen.NET is a general purpose graph rewrite system and not a model
transformation tool, we do not support importing Ecore metamodels di-
rectly (we directly support GXL and GRS files). Instead we offer an import
filter generating an equivalent GrGen.NET-specific graph model (.gm file)
from a given Ecore file by mapping classes to GrGen node classes, their at-
tributes to corresponding GrGen attributes, and their references to GrGen
edge classes. Inheritance is transferred one-to-one, and enumerations are
mapped to GrGen enums. Class names are prefixed by the names of the
packages they are contained in to prevent name clashes. Afterwards the
instance graph XMI adhering to the Ecore model thus adhering to the just
generated equivalent GrGen graph model is imported by the filter into the
system to serve as the host graph for the following transformations. The
entire process is shown in Figure 1 above.

3.2 Transformation

The transformation is done in several passes, one pass for each node type
and edge type, respectively. Each pass consists of the iterated application

2

of one single rule which matches a node or edge of an UML 1.4 type to
process and rewrites it to its corresponding UML 2.2 target type. Instead of
handling the edges together with the nodes we process them separately. This
relieves us from taking care of the multiplicities of the incoming or outgoing
edges, which allows for a simple solution built from very simple rules. This
approach is possible because of the availability of a retype operator which
allows to change the type of a node (edge) keeping all incident edges (nodes).

We start the detailed presentation of the solution with the following
example rule:

rule t rans fo rm Act ionState {
s t a t e : minuml1 ActionState ;

modify {
opaque : uml OpaqueAction<s ta te >;

eval { opaque . name = s t a t e . name ; }
}

}

Rules in GrGen consist of a pattern part specifying the graph pattern to
match and a nested rewrite part specifying the changes to be made. The
pattern part is built up of node and edge declarations or references with an
intuitive1 syntax: Nodes are declared by n:t, where n is an optional node
identifier, and t its type. An edge e with source x and target y is declared
by x -e:t-> y, whereas --> introduces an anonymous edge of type Edge.
Nodes and edges are referenced outside their declaration by n and -e->,
respectively. The rewrite part is specified by a modify block nested within
the rule. Usually, here you would add new graph elements or delete old
ones, but in this case we only want to retype them (also known as relabeling
in the graph rewriting community). Retyping is specified with the syntax
y:t<x>: this defines y to be a retyped version of the original node x, retyped
to the new type t; for edges the syntax is -y:t<x>->. These and a lot more
language elements are described in more detail in the extensive GrGen.NET
user manual [2].

In the example a node state of type ActionState (mind the package
name mangling) is specified in the pattern part to get matched. In the
rewrite part it is specified to get retyped to a node opaque of type Opaque-

Action. Furthermore the name attribute of the original node is assigned
to the name attribute of the new, retyped node in the attribute evaluation
eval.

1it was used in the discussion forum for this case as textual notation to describe the
patterns

3

Most of the rules are as easy as this one. Only for a few types, the rewriting
additionally depends on further local information or the context where the
graph element appears in. An example for further local information to be
taken into account is the rule for the transformation of the Pseudostate

nodes. An alternative construct is used here (namespace prefixes were
removed due to space constraints):

rule trans form PseudoState {
s t a t e : Pseudostate ;

alternative {
I n i t i a l {

i f { s t a t e . k ind == PseudostateKind : : i n i t i a l ; }
modify {

i n i t i a l : In i t i a lNode<s ta te >;
eval { i n i t i a l . name = s t a t e . name ; }

}
}
Join {

i f { s t a t e . k ind == PseudostateKind : : j o i n ; }
modify {

j o i n : JoinNode<s ta te >;
eval { j o i n . name = s t a t e . name ; }

}
}
Fork { /∗ s im i l a r to the cases above ∗/ }
Junct ion { /∗ s im i l a r to the cases above ∗/ }

}

modify {
}

}

There are four possible target types for the source type, so four different
alternative cases are specified, each relabeling to one of the types in their
nested rewrite part. The correct type depends on the kind value of the source
node; this condition is checked by an attribute condition given within the
if-clause (fitting to the rewrite).

An example for context dependency is the rewriting of the Transition

nodes. If they are linked to a node of ObjectFlowState (rewritten to Pin),
they get retyped to nodes of type ObjectFlow, otherwise to nodes of type
ControlFlow. This is expressed again with an alternative statement as
you can see below, with a case for the transformation to control flow, pre-
venting by negative patterns that it matches on the object flow situation,
and two almost identical cases for the incoming and outgoing object flow.

4

rule t r ans f o rm Trans i t i on {
t r a n s i t i o n : Trans i t i on ;

alternative {
contro lFlow {

negative {
t r a n s i t i o n <−:StateVertex incoming− : uml Pin ;

}
negative {

t r a n s i t i o n <−:StateVertex outgo ing− : uml Pin ;
}
modify {

c f : uml ControlFlow<t r a n s i t i o n >;
eval { c f . name = t r a n s i t i o n . name ; }

}
}
incomingObjectFlow {

t r a n s i t i o n <−:StateVertex incoming− : uml Pin ;
modify {

o f : uml ObjectFlow<t r a n s i t i o n >;
eval { o f . name = t r a n s i t i o n . name ; }

}
}
outgoingObjectFlow { /∗ s im i l a r to case above ∗/ }

}

modify {
}

}

As a final example for the transformation core let us have a look at one of
the rules for the retyping of the edges – they follow the GrGen design target
of handling nodes and edges as uniform as possible: they are nearly identical
to the rules for the retyping of the nodes:

rule t r an s f o rm Sta t eMach ine t r an s i t i on s {
−e : minuml1 StateMachine trans i t ions−>;

modify {
−: uml Act iv i ty edge<e>−>;

}
}

5

The four shown rules are applied from within the graph rewrite script for
the core solution executed by the GrShell:

import or ig ina l min imal metamode l . e co re
evolved metamodel . e co re
o r i g i n a l m o d e l . xmi core . grg

Transform nodes
xgrs . . . | t rans fo rm Act ionState ∗ | trans form PseudoState ∗

| t r ans f o rm Trans i t i on ∗ | . . .
Transform edges
debug xgrs . . . | t r an s f o rm Sta t eMach ine t r an s i t i on s ∗ | . . .

The xgrs keyword starts an extended graph rewrite sequence, which is
the rule application control language of GrGen (prepending debug before
xgrs allows you to debug the sequence execution in GrShell). The single
rules are applied iteratively by the star operator until no match is found.
They are linked by eager ors which get executed from left to right, yielding
the disjunction of the truth values emanating from iteration execution (a rule
which can get applied because a match is found in the graph succeeds(true),
whereas a rule for which no match is found fails(false); the star operator
always succeeds).

Overall our solution complies to the following scheme:

• For each node or edge type there is one rule relabeling an element of
this type, often containing nothing more than this relabeling, some-
times using alternatives to decide between possible target types de-
pending on the context.

• Each of this rules gets applied exhaustively, one rule after the other;
first handling all node types, then handling all edge types (thus a few
context dependent rules match against nodes/edges of types from the
source and target model).

This approach is obviously correct and as concise and clear as a solution
can be; at least as far as we can imagine – we will see if other solutions can
teach us better. The modulare nature of this approach facilitates extensions
regarding the support of additional UML elements and the realization of
alternative semantics (see section 4). (Please note that it would be possible
to shrink the number of rules down to one to be applied iteratively using an
alternative with a lot of cases; or by using strings instead of types to encode
the model types, transforming them by string replacement using map types
and map lookup. But we prefer to give straight forward real-world solutions.)

3.3 Exporting the Graph

Our XMI exporter consists of several graph transformation rules that tra-
verse the graph hierarchically while emitting the corresponding XMI tags.

6

The following rule exports an activity:

rule e m i t a c t i v i t y {
a c t i v i t y : uml Act iv i ty ;
a c t i v i t y −:DumpEdge−> d : DumpNode ;

modify {
emit (” <packagedElement xmi : type=\”uml : Ac t i v i t y \””) ;
emit (” xmi : id=\”” + d . id + ”\””) ;
emit (” name=\”” + a c t i v i t y . name + ”\”>\n”) ;
exec (e m i t a c t i v i t y n o d e s (a c t i v i t y)) ;
exec (e m i t a c t i v i t y e d g e s (a c t i v i t y)) ;
exec (e m i t a c t i v i t y g r o u p s (a c t i v i t y)) ;
emit (” </packagedElement>\n”) ;

}
}

Since we need a unique ID for each node, we connect each node to a DumpNode
node that provides such an ID. The emit statements emit the given strings;
here they fill up the template of the XMI tag with node attributes. The
rules executed by the exec statement are responsible for emitting all nodes,
edges, and groups of the current activity, respectively.

4 The Extensions

In addition to the core task three extensions were proposed:

• Alternative Object Flow State Migration Semantics

• Concrete Syntax

• XMI

We will discuss them and our solutions to them in the following sections.

4.1 Alternative Object Flow State Migration Semantics

The goal of this extension is to transform a node of type ObjectFlowState

linked to nodes of type Transition to a node of type ObjectFlow only,
instead of transforming them to a node of type Pin linked to nodes of type
ObjectFlow. The purpose of this task is to evaluate how well the trans-
formation tools can cope with transformations which do not map source
pattern elements injectively to target pattern elements. Or to put it in an-
other way: require real graph rewriting instead of only graph relabeling. As
GrGen.NET is a graph rewrite system in the first place, this does not cause
any problems:

7

rule trans form ObjectFlowState2 {
s t a t e : ObjectFlowState ;
s1 : StateVertex <−:T rans i t i on sourc e− t1 : Trans i t i on ;
t1 −: T r a n s i t i o n t a r g e t−> s t a t e ;
s t a t e <−:T rans i t i on sourc e− t2 : Trans i t i on ;
−: T r a n s i t i o n t a r g e t−> s2 : StateVertex ;
s t a t e <−:P a r t i t i o n c o n t e n t s− p : P a r t i t i o n ;

modify {
delete (s ta te , t2) ;

f low : ObjectFlow<t1 >;
f l ow −: Act iv i tyEdge targe t−> s2 ;
f low <−:Act ivityNode incoming− s2 ;
f low −: Ac t i v i tyEdge inPar t i t i on−> p ;
f low <−:A c t i v i t y P a r t i t i o n e d g e− p ;

eval { f l ow . name = s t a t e . name ; }
}

}

4.2 Concrete Syntax

The goal of this extension is to transform the concrete syntax, i.e. the user
drawn diagram layout, from the given diagram to the concrete syntax of
the tool under consideration. As GrGen.NET was originally developed for
handling compiler intermediate language graphs which do not possess a user
drawn layout we do not offer a concrete visual syntax showing user editing.
So we cannot transform any concrete syntax — but as the ultimate goal of a
concrete syntax is a nice layout, we want to present a solution of a different
kind: we offer a highly customizable graph viewer with automatic layout –
which comes near to the concrete syntax of the activity diagram given as
you may see in Figure 2.

In a lot of situations an automatic layout is the better choice as it delivers
a very nice presentation without user interaction (besides a few lines of
configuration code). You can configure the graph viewer named yComp
which gets executed from GrShell to use one of several available layout
algorithms – with hierarchic, compilergraph and organic being the most
useful ones. You can configure for every available node or edge type in
which colour with what node shape or edge style it should be shown, with
what attribute values or fixed text as element labels or tags it is to be
displayed, or if it should be shown at all. Further on you can configure
graph nesting by registering edges at certain nodes to define a containment
hierarchy, causing the nodes to become displayed as subgraphs containing

8

Figure 2: The transformed UML 2.2 activity diagram as displayed by yComp

the elements to which they are linked by the given edges. Additionally it
offers automatic cutting of hierarchy crossing edges, marking the begin and
end by fat dots, allowing to jump to either one by clicking on the other.
You can easily define a layout matching your graph class by a few dozen
lines of configuration information and afterwards you get a fully automatic,
high-quality layout of your instance graphs.

In the following listing, we show an excerpt from our configuration file
for customizing the graph layout of the UML 2.2 diagram (the first two
lines ensure that each ActivityPartition node contains all nodes that are
connected by an outgoing uml ActivityPartition node edge):

dump add node uml Act i v i t yPar t i t i on group by
hidden outgoing uml Act iv i tyPar t i t i on node

dump set node uml Act i v i t yPar t i t i on labels o f f
dump add node uml Act i v i t yPar t i t i on shortinfotag name

dump add edge uml Act iv i tyNode inPar t i t i on exclude

dump set node uml DecisionNode shape rhomb
dump set node uml DecisionNode labels o f f
dump set node uml DecisionNode color white

9

4.3 XMI

The goal of this extension is to import an activity diagram given in XMI
1.x instead of XMI 2.x. The task is to write an import filter for an outdated
format used in the model transformation community. While we did write an
import filter for XMI 2.x (a slightly extended version of the filter originally
introduced for the GraBaTs 2009 Reverse Engineering case [3]), we will not
write a filter for XMI 1.x. The XMI 2.x filter allows to use the transformation
capabilities of GrGen.NET with data in the Ecore/XMI format common
to the model transformation community briding the graph rewriting and
the model transformation communities; but supplying another Ecore/XMI
filter just for the sake of this contest is beyond our scope. And we think
it is out of scope even for the TTC as such: we doubt writing an import
filter is a worthwhile challenge for a transformation tool contest comparing
the transformation capabilities of the competing tools in order to foster the
progress in software engineering. If it really were, we would like to propose to
the authors from the model transformation community to follow our example
bridging both worlds by writing an import filter for GXL, the standard in
the graph rewriting community.

5 Conclusion

In this paper we presented a GrGen.NET solution to the Model Migration
challenge of the Transformation Tool Contest 2010. The activity diagram
conforming to the UML 1.4 metamodel was imported by an import filter
under remapping to the graph concepts supported by GrGen. It was trans-
formed to a semantically equivalent activity diagram conforming to an UML
2.2 metamodel using graph relabeling : this ability of retyping nodes (edges)
while keeping their incident edges (nodes) allowed us to give a very con-
cise and simple solution to the core task of the Model Migration challenge,
exhaustively relabeling nodes then edges with very simple rules until the
entire graph was transformed. Retyping of elements from the source model
to different target types depending on further, context information was pos-
sible by using alternatives in our patterns. The first extension requiring
real graph rewriting was solved easily with one additional declarative graph
rewrite rule, in an intuitive syntax similar to the one specified by the authors.
The second extension was not tackled directly due to the lack of a concrete
syntax; but we presented an alternative solution (performing even better in
a lot of cases) regarding the ultimate goal of a concrete syntax with our
graph viewer yComp, delivering an excellent automatic layout of arbitrary
data from a few lines of configuration information. The third extension was
not tackled at all as we regard it off-topic at least for us.

10

References

[1] Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model Migration
Case for TTC 2010. http://is.ieis.tue.nl/staff/pvgorp/events/

TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf (2010)

[2] Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual.
http://www.grgen.net (2010)

[3] Buchwald, S., Jakumeit, E., Kroll, M.: A GrGen.NET so-
lution of the Program Comprehension case for the GraBaTs
2009 Contest (2009) http://is.tm.tue.nl/staff/pvgorp/events/

grabats2009/submissions/grabats2009_submission_13-final.pdf.

11

http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf
http://www.grgen.net
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/grabats2009_submission_13-final.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/grabats2009_submission_13-final.pdf

	Introduction
	What is GrGen.NET?
	The Core Assignment
	Importing the Graph
	Transformation
	Exporting the Graph

	The Extensions
	Alternative Object Flow State Migration Semantics
	Concrete Syntax
	XMI

	Conclusion

