
A GrGen.NET solution of the Reengineering Case

for the Transformation Tool Contest 2011

Edgar Jakumeit Sebastian Buchwald

May 2, 2011

1 Introduction

The challenge of the Reengineering Case [1] is to extract a state machine
model out of the abstract syntax graph of a Java program. The extracted
state machine offers a reduced view on the full program graph and thus helps
to understand the program regarding the question of interest. We tackle
this task employing the general purpose graph rewrite system GrGen.NET
(www.grgen.net).

2 What is GrGen.NET?

GrGen.NET is an application domain neutral graph rewrite system devel-
oped at the IPD Goos of Universität Karlsruhe (TH), Germany [2]. The
feature highlights of GrGen.NET regarding practical relevance are:

Fully Featured Meta Model: GrGen.NET uses attributed and typed
multigraphs with multiple inheritance on node/edge types. Attributes
may be typed with one of several basic types, user defined enums, or
generic set, map, and array types.

Expressive Rules, Fast Execution: The expressive and easy to learn
rule specification language allows straightforward formulation of even
complex problems, with an optimized implementation yielding high
execution speed at modest memory consumption.

Programmed Rule Application: GrGen.NET supports a high-level rule
application control language, Graph Rewrite Sequences (GRS), offer-
ing logical, sequential and iterative control plus variables and storages
for the communication of processing locations between rules.

Graphical Debugging: GrShell, GrGen.NET’s command line shell,
offers interactive execution of rules, visualizing together with yComp
the current graph and the rewrite process. This way you can see what
the graph looks like at a given step of a complex transformation and
develop the next step accordingly. Or you can debug your rules.

1

www.grgen.net

Program graph
(XMI)

Program
graph model

(Ecore)

Program graph
(GrGen)

Program
graph model

(GrGen)

State machine
(GrGen)

State ma-
chine model

(GrGen)

State machine
(XMI)

State ma-
chine model

(Ecore)

conformsTo import extract export

Figure 1: Processing steps of the model extraction. The extraction and the
XMI export are written in GrGen.NET languages. Import is handled by a
supplied import filter, which generates .gm files as an intermediate step.

3 The Core Assignment

The task of the core assignment is to extract a state machine model out
of the abstract syntax graph of a Java program. The task stems from the
domain of software reengineering where software engineers need to gain in-
sights into legacy systems, which is a lot easier given a birds eye view on
the high level structure (and thus behavior) of the program. The aim of
the task is to evaluate the solutions and especially the tools backing them
regarding performance and scalability, with a domain leading naturally to
large graphs to be considered, and especially to evaluate the solutions and
tools regarding the ability to – and conciseness in – carrying out complex,
non-local matchings of graph elements, requiring the matching of recursive
graph structures. Before the extraction can take place, the Java program
graph needs to be imported from an Ecore file describing the source model
and an XMI file specifying the graph. Afterwards the resulting state ma-
chine has to be exported into an XMI file conforming to a given Ecore file
describing the state machine model.

3.1 Importing the Graph

As GrGen.NET is a general purpose graph rewrite system and not a model
transformation tool, we do not support importing Ecore metamodels di-
rectly. Instead we supply an import filter generating an equivalent GrGen-
specific graph model (.gm file) from a given Ecore file by mapping classes
to GrGen node classes, their attributes to corresponding GrGen attributes,
and their references to GrGen edge classes. Inheritance is transferred one-
to-one, and enumerations are mapped to GrGen enums. Class names are
prefixed by the names of the packages they are contained in to prevent name
clashes; the same holds for references which are prefixed by their node class
name. Afterwards the instance graph XMI adhering to the Ecore model thus
adhering to the just generated equivalent GrGen graph model is imported

2

by the filter into the system to serve as the host graph for the following
extractions, i.e. transformations. The entire process is shown in Figure 1
above.

3.2 Extraction

The transformation is done in two steps, the first creating the states of the
state machine, and the second inserting the transitions in between. Each
step consists of the application of one rule (utilizing a subpattern) on all
matches found (giving a direct correspondence between coding conventions
and rules).

Let us start with a short introduction into the syntax of the basic con-
structs of the rule language: Rules in GrGen consist of a pattern part spec-
ifying the graph pattern to match and a nested rewrite part specifying the
changes to be made. The pattern part is built up of node and edge decla-
rations or references with an intuitive syntax: Nodes are declared by n:t,
where n is an optional node identifier, and t its type. An edge e with
source x and target y is declared by x -e:t-> y, whereas --> introduces
an anonymous edge of type Edge. Nodes and edges are referenced outside
their declaration by n and -e->, respectively. Attribute conditions can be
given within if-clauses.

The rewrite part is specified by a replace or modify block nested within
the rule. With replace-mode, graph elements which are referenced within
the replace-block are kept, graph elements declared in the replace-block
are created, and graph elements declared in the pattern, not referenced in
the replace-part are deleted. With modify-mode, all graph elements are
kept, unless they are specified to be deleted within a delete()-statement.
Attribute recalculations can be given within an eval-statement. These and
the language elements we introduce later on are described in more detail in
the extensive GrGen.NET user manual [2].

Now let us have a look at the code to create the states:

rule createStates

{

stateClass:Class;

stateClass -:annotationsAndModifiers -> :Abstract;

if { stateClass.name == "State"; }

es:CreateStates(stateClass);

modify {

sm:StateMachine;

es(sm);

}

}

3

Here and in the following rules the prefixes from name mangling were
removed due to space constraints. We search for the abstract class of name
State as starting point and create the state machine which will receive the
states and transitions found. The real work is done in a subpattern Cre-

ateStates, of which an instance es is declared and thus searched from the
found stateClass on; or better in the rewrite part of this subpattern, which
is applied with rule call syntax handing in the just created StateMachine

node:

pattern CreateStates(parentClass:Class) modify(sm:StateMachine)

{

iterated {

extendingClass:Class -:extends -> r:NamespaceClassifierReference;

r -:classifierReferences -> cr:ClassifierReference;

cr -:target -> parentClass;

es:CreateStates(extendingClass);

optional {

negative {

extendingClass -:annotationsAndModifiers -> :Abstract;

}

modify {

sm -:states -> s:State;

s -:link -> extendingClass;

eval { s.name = extendingClass.name; }

}

}

modify {

es(sm);

}

}

modify { }

}

The subpattern searches all classes directly extending the given parent
class handed in as parameter, matching into breadth with the iterated

construct; the iterated matches all instances of its contained pattern which
can be found in the host graph. Then the subpattern matches into depth
by calling itself recursively with the just matched class as parameter. In
the optional case the class is not abstract a state is created within the state
machine and a link edge is created linking the state with the class. The
optional matches the contained pattern if it is available in the host graph.
The negative causes matching of the containing pattern to fail if its pattern
can be found in the host graph.

4

The transitions are inserted with a second rule:

rule createTransitions

{

expressionStatement:ExpressionStatement -:expression -> refTargetClass;

refTargetClass:IdentifierReference -:target -> targetClass:Class;

refTargetClass -:next -> callInstance;

callInstance:MethodCall -:target -> instance:ClassMethod;

callInstance -:next -> callActivate;

callActivate:MethodCall -:target -> activate:ClassMethod;

if { instance.name=="Instance" && activate.name=="activate"; }

targetClass <-:link - targetState:State;

def sourceState:State;

fss:FindSourceState(expressionStatement , yield sourceState);

sm:StateMachine;

modify {

sm -:transitions -> transition:Transition;

sourceState <-:src - transition -:dst -> targetState;

sourceState -:out -> transition <-:in- targetState;

transition -:link -> expressionStatement;

fss(transition);

}

}

For inserting the transitions into the state machine we search for the
class.Instance().activate() pattern in the graph, if found we know
the target state from the class of the called method and the link between
the class and the state we inserted previously. Then we search with the
subpattern FindSourceState for the source state, which gets yielded into
the def pattern element sourceState. If all of this was found we add a
Transition in between the source state and the target state, additionally
linking it to the expressionStatement containing the method call.

pattern FindSourceState(containedEntity:Node , def sourceState:State)

modify(transition:Transition)

{

alternative {

StatementListContainer {

listContainer:StatementListContainer -:statements -> containedEntity;

fss:FindSourceState(listContainer , yield sourceState);

modify {

transition -:link -> listContainer;

fss(transition);

}

}

StatementContainer {

container:StatementContainer -:statement -> containedEntity;

fss:FindSourceState(container , yield sourceState);

modify {

transition -:link -> container;

fss(transition);

5

}

}

StatementSwitch {

switch:Switch -:cases -> containedEntity;

fss:FindSourceState(switch , yield sourceState);

modify {

transition -:link -> switch;

fss(transition);

}

}

StatementCondition {

condition:Condition -:elseStatement -> containedEntity;

fss:FindSourceState(condition , yield sourceState);

modify {

transition -:link -> condition;

fss(transition);

}

}

StatementTry {

try:TryBlock -:catcheBlocks -> containedEntity;

fss:FindSourceState(try , yield sourceState);

modify {

transition -:link -> try;

fss(transition);

}

}

Class {

cc:Class -:members -> containedEntity;

ss:State -:link -> cc;

yield { yield sourceState = ss; }

modify {

transition -:link -> cc;

}

}

}

modify { }

}

The subpattern is used to recursively walk outwards from the method
call to the class containing the call; passing over the different types of state-
ments and statement containers which might be on the way, until the class
is reached yielding it back. The statements passed are all linked to the
transition, this will be helpful for the extension tasks.

3.3 Extension tasks

The trigger attribute of the transitions are filled by four rules for the four
different ways specified; they get executed one after the other (this way
handling the priority), first the non run method, then the switch case, then
the catch block and finally the fallback rule. Due to the links from the
transitions to all the constructs on the path from the method call to the

6

containing class this is a simple local pattern search:

rule addTriggerNonRunMethodName

{

transition:Transition -:link -> method:ClassMethod;

if { method.name != "run"; }

modify {

eval { transition.trigger = method.name; }

}

}

rule addTriggerSwitchCaseEnumValueName

{

transition:Transition -:link -> case:NormalSwitchCase;

case -:condition -> caseCondition:IdentifierReference;

caseCondition -:target -> value:EnumConstant;

modify {

eval { transition.trigger = value.name; }

}

}

rule addTriggerCatchBlockExceptionClassName

{

transition:Transition -:link -> catchBlock:CatchBlock;

catchBlock -:parameter -> parameter:OrdinaryParameter;

parameter -:typeReference -> nspClassRef:NamespaceClassifierReference;

nspClassRef -:classifierReferences -> classRef:ClassifierReference;

classRef -:target -> exceptionClass:Class;

modify {

eval { transition.trigger = exceptionClass.name; }

}

}

rule addTriggerOtherwise

{

transition:Transition;

if { transition.trigger == null || transition.trigger == ""; }

modify {

eval { transition.trigger = "--"; }

}

}

The action attribute of the transitions are filled by two rules for the two
different ways specified; first the enum value used in a send method, then
the fallback rule. Again this is a simple local pattern search due to the links
from the transitions to all the constructs on the path from the method call
to the containing class:

7

rule addActionSend

{

transition:Transition -:link -> block:StatementListContainer;

block -:statements -> exprStmt:ExpressionStatement;

exprStmt -:expression -> callMethod:MethodCall;

callMethod -:target -> method:ClassMethod;

callMethod -:arguments -> enumClassRef:IdentifierReference;

enumClassRef -:next -> enumValueRef:IdentifierReference;

enumValueRef -:target -> enumValue:EnumConstant;

if { method.name == "send"; }

modify {

eval { transition.action = enumValue.name; }

}

}

rule addActionOtherwise

{

transition:Transition;

if { transition.action == null || transition.action == ""; }

modify {

eval { transition.action = "--"; }

}

}

A visualization of the resulting state machine is given in Figure 2.

3.4 Exporting the State machine

The XMI export is handled by 5 additional rules given in export.gri con-
taining emit statements: one for assigning XMI ids to the elements to be
exported, which are stored in a map from the nodes to the corresponding
ids, two for writing the XMI prefix and suffix, and one each for writing the
States and writing the Transitions, utilizing the previously computed
node to id mapping.

4 Rule control, performance, and visualization

The rules are applied from within the graph rewrite script reengineer-

ing.grs executed by the GrShell, which contains these lines:

import primitive_types.ecore java.ecore StateMachine.ecore

1_small -model.xmi reengineering.grg

xgrs [createStates]

xgrs [createTransitions]

xgrs [addTriggerNonRunMethodName] ;> [addTriggerSwitchCaseEnumValueName] \

;> [addTriggerCatchBlockExceptionClassName] ;> [addTriggerOtherwise]

xgrs [addActionSend] ;> [addActionOtherwise]

8

Figure 2: The resulting state machine, with an edge selected and its at-
tributes displayed

9

The import command imports the XMI input graph complying to the
Ecore models, and additionally includes the rules given in the rule file. The
xgrs keyword starts an extended graph rewrite sequence, which is the rule
application control language of GrGen (prepending debug before xgrs allows
you to debug the sequence execution in GrShell). The rules are executed on
all the matches found, which is requested by the all-bracketing [rule]. The
then-left operator ;> executes the left sequences, then the right sequence,
and returns as sequence result the result of the right sequence; the sequence
results are uninteresting for this task, in general they are used to control
sequence applications.

4.1 Performance

The benchmark results for the extraction task are given in the following
table.

set no. import time import size shell time shell size extraction time

1 2,855 2.0 31 3.5 130
2 2,917 2.1 32 3.6 140
3 17,878 188.8 4,165 420.9 187

1 1,279 1.3 46 2.3 125
2 1,314 1.3 47 2.4 130
3 28,658 105.3 7,800 277.4 213

Table 1: Results for different input sets; running time in ms, memory usage
in MiBytes.

The given values are computed as the arithmetic mean of the middle 3
values out of 5 measurements, on a Core i7 920 (2.6GHz) with 6 GiBytes
of main memory under Windows Vista 64 Bit with MS .NET 64 Bit for
the upper part of the table and on a Core 2 Duo U9600 (1.6GHz) with 3
GiBytes of main memory under Windows 7 32 Bit with MS .NET 32 Bit
for the lower part. Import time is the time needed for importing the graph,
import size is the size of the heap after importing the graph. Shell time
is the additional time needed to transform the imported graph as it would
show up on API level to a named graph as used by the GrShell of the
rapid prototyping environment, shell size is the size of the heap after the
named graph was constructed. Extraction time is the time needed for the
application of the extraction rules. Remark: the dominating component of
the extraction time is the time needed by the .NET just-in-time compiler
producing machine code out of the .NET bytecode.

10

Figure 3: The program graph, the rectangles are the classes, the top one is
the state machine

4.2 Visualization

GrGen.NET utilizes the graph viewer yComp as visualization component;
the final state machine visualization was already presented with Figure 2.
But in addition to the state machine, yComp is able to give a decent visu-
alization of the original program graph, too, as you may see in the Figures
3, 4 and 5 which give a series of images zoomed in, an outstanding help in
understanding and debugging.

This is made possible by the high configurability of yComp which gets
executed from GrShell. You can use one of several available layout algo-
rithms – with hierarchic, organic and compilergraph being the most useful
ones. You can configure for every available node or edge type in which color
with what node shape or edge style it should be shown, with what attribute
values or fixed text as element labels or tags it is to be displayed, or if it
should be shown at all. Furthermore you can configure graph nesting by
registering edges at certain nodes to define a containment hierarchy, caus-
ing the nodes to become displayed as subgraphs containing the elements to
which they are linked by the given edges.

In the following listing, we show an excerpt from our configuration file
for customizing the graph layout of the program graph:

11

Figure 4: The program graph zoomed with the class SynSent and the state
machine

Figure 5: The program graph zoomed further to the method run of the class
SynSent

12

debug set layout Hierarchic

dump add node classifiers_Classifier

group by hidden outgoing members_MemberContainer_members

dump add node members_Method

group by hidden outgoing members_MemberContainer_members

dump add node classifiers_Annotation exclude

dump set node members_Method color pink

dump set node members_Field color cyan

dump set edge references_ElementReference_target color grey

dump add node classifiers_Class shortinfotag _name

dump add node members_Method shortinfotag _name

In addition a helper edge introduction step was added, so that all ex-
pression nodes are nested inside their containing statements, not only the
outermost ones. A helper step was used in producing the final state machine
visualization, too, replacing Transition nodes with real edges.

5 Conclusion

In this paper we presented a GrGen.NET solution to the Reengineering chal-
lenge of the Transformation Tool Contest 2011. The abstract Java syntax
graph conforming to the java.ecore metamodel was imported by a supplied
import filter under remapping to the graph concepts supported by GrGen;
the extracted state machine was exported by a handful of text emitting
graph rewrite rules. A state machine giving a high level overview was ex-
tracted out of it using graph rewriting with recursive structures: this ability
of matching and rewriting recursive patterns allowed us to give a concise
and simple solution to the core task of the Reengineering challenge closely
following the specification given, with rules matching kernel patterns and
subpattern recursion and iteration to match recursive structures into depth
and breadth. During rewriting of the recursive match for transition cre-
ation, from the activation call to the containing class outwards, links were
inserted from the transition to the elements visited; besides having been a
help in debugging they especially allowed to easily solve the extension task
with purely local graph rewrite rules. With about 200ms needed for the
extraction out of the large graph, performance was not an issue. The goal of
the task is to allow program understanding by extracting and displaying a
reduced, easily understandable model. In addition to visualizing this simple
model we have presented a visualization of the original program graph with
our graph viewer yComp, which allows to even work on this level without
getting lost in a haystack, what graphs of this size tend to become. This was
made possible by color customization and especially graph nesting, grouping

13

contained nodes into the node containing them, allowing a program reengi-
neer to hierarchically navigate the graph to the point and the elements of
interest.

References

[1] Horn, T.: Model Transformations for Program Understanding: A
Reengineering Challenge. http://is.ieis.tue.nl/staff/pvgorp/

events/TTC2011/cases/ttc2011_submission_1.zip (2011)

[2] Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual.
http://www.grgen.net (2011)

14

http://is.ieis.tue.nl/staff/pvgorp/events/TTC2011/cases/ttc2011_submission_1.zip
http://is.ieis.tue.nl/staff/pvgorp/events/TTC2011/cases/ttc2011_submission_1.zip
http://www.grgen.net

	Introduction
	What is GrGen.NET?
	The Core Assignment
	Importing the Graph
	Extraction
	Extension tasks
	Exporting the State machine

	Rule control, performance, and visualization
	Performance
	Visualization

	Conclusion

